

Hughes Information Technology Corporation
Upper Marlboro, MD

305-CD-043-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Resource Management Design

Specification for the ECS Project

October 1995

Hughes Information Technology Corporation

Upper Marlboro, Maryland

Flight Operations Segment (FOS)
Resource Management Design Specification

for the ECS Project

October 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

APPROVED BY

Cal Moore, FOS CCB Chairman Date
EOSDIS Core System Project

Cal Moore /s/ 9/22/95

ii 305-CD-043-001

This page intentionally left blank.

iii 305-CD-043-001

Preface

This document, one of nineteen, comprises the detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1
launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project in-
clude:

305-CD-040 FOS Design Specification (Segment Level Design)

305-CD-041 Planning and Scheduling Design Specification

305-CD-042 Command Management Design Specification

305-CD-043 Resource Management Design Specification

305-CD-044 Telemetry Design Specification

305-CD-045 Command Design Specification

305-CD-046 Real-Time Contact Management Design Specification

305-CD-047 Analysis Design Specification

305-CD-048 User Interface Design Specification

305-CD-049 Data Management Design Specification

305-CD-050 Planning and Scheduling Program Design Language (PDL)

305-CD-051 Command Management PDL

305-CD-052 Resource Management PDL

305-CD-053 Telemetry PDL

305-CD-054 Real-Time Contact Management PDL

305-CD-055 Analysis PDL

305-CD-056 User Interface PDL

305-CD-057 Data Management PDL

305-CD-058 Command PDL

Object models presented in this document have been exported directly from CASE tools
and in some cases contain too much detail to be easily readable within hard copy page
constraints. The reader is encouraged to view these drawings on line using the Portable
Document Format (PDF) electronic copy available via the ECS Data Handling System
(EDHS) at URL http://edhs1.gsfc.nasa.gov.

iv 305-CD-043-001

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS Configu-
ration Management Plan, and changes to this document shall be made by document change notice
(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, MD 20774

v 305-CD-043-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed de-
sign. The first document, the FOS Segment Level Design, provides an overview of the FOS seg-
ment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem de-
sign.

Keywords: FOS, design, specification, analysis, IST, EOC

vi 305-CD-043-001

This page intentionally left blank.

vii 305-CD-043-001

Change Information Page

List of Effective Pages

Page Number Issue

Title

Original

iii through xii

Original

1 -1 and 1-2

Original

2-1 through 2-4

Original

3-1 through 3-148

Original

AB-1 through AB-4

Original

GL-1 through GL-10

Original

Document History

Document
Number

Status/Issue Publication Date CCR Number

305-CD-043-001 Original October 1995 95-0652

viii 305-CD-043-001

This page intentionally left blank.

ix 305-CD-043-001

Contents

Preface

Abstract

Change Information Page

1. Introduction

1.1 Identification ... 1-1
1.2 Scope.. 1-1
1.3 Purpose .. 1-1
1.4 Status and Schedule ... 1-1
1.5 Document Organization .. 1-1

2. Related Documentation

2.1 Parent Document ... 2-1
2.2 Applicable Documents .. 2-1
2.3 Information Documents ... 2-2

2.3.1 Information Document Referenced ... 2-2

 3. Real-Time Resource Management Subsystem

3.1 Resource Management Subsystem Context... 3-3
3.2 RMS String Manager Component .. 3-5

3.2.1 RMS String Manager Component Context ... 3-6
3.2.2 RMS String Manager Component Interfaces .. 3-9
3.2.3 RMS String Manager Component Object Model .. 3-11
3.2.4 RMS String Manager Component Dynamic Model .. 3-30
3.2.5 RMS String Manager Component Data Dictionary ... 3-82

3.3 RMS Resource Monitor Component .. 3-123
3.3.1 RMS Resource Monitor Component Context.. 3-124
3.3.2 RMS Resource Monitor Component Interfaces ...3-126
3.3.3 RMS Resource Monitor Component Object Model 3-126
3.3.5 RMS Resource Monitor Component Data Dictionary3-140

3.4 Resource Management Subsystem Performance .. 3-148

x 305-CD-043-001

Abbreviations and Acronyms

Glossary

Figures

3.1-1 Resource Management Subsystem Context Diagram... 3-4
3.2.1-1 RMS String Manager Component Context Diagram.. 3-8
3.2.3-1 RMS String Manager Component Object Model .. 3-12
3.2.3-2 RMS String Manager Component FrGrTelemetry Object Model 3-15
3.2.3-3 RMS String Manager Component FrGrCommand Object Model 3-16
3.2.3-4 RMS String Manager Component FrGrRTContact Object Model 3-17
3.2.3-5 RMS String Manager Component FrGrRequestHandler Object Model 3-18
3.2.3-6 RMS String Manager Component FrGrMessage Object Model 3-20
3.2.3-7 RMS String Manager Component FrGrStringAccessRequest Object Model 3-21
3.2.3-8 RMS String Manager Component FrGrBackupServiceRequest Object Model . 3-22
3.2.3-9 RMS String Manager Component FrGrStringFailoverRequest Object Model ... 3-23
3.2.3-10 RMS String Manager Component FrGrAdjustLimitRequest Object Model 3-25
3.2.3-11 RMS String Manager Component FrGrPrivilegeRequest Object Model 3-26
3.2.3-12 RMS String Manager Component FrGrServiceRequest Object Model 3-27
3.2.3-13 RMS String Manager Component FrGrStringDeleteRequest Object Model 3-28
3.2.3-14 RMS String Manager Component FrGrTableUpdateRequest Object Model 3-29
3.2.4.1.4-1 Initialization of RMS Residing on the Workstation Event Trace 3-33
3.2.4.2.4-1 Initialization of RMS (Part 1 of 2) .. 3-36
3.2.4.2.4-2 Initialization of RMS (Part 2 of 2) .. 3-37
3.2.4.2.4-3 Initialization of RTS RMS ... 3-38
3.2.4.2.4-4 Initialization of RTS RMS ... 3-39
3.2.4.2.4-5 Initialization of RTS RMS ... 3-40
3.2.4.3.4-1 Request for a Real-Time Service Arrives on the Workstation Event Trace 3-42
3.2.4.4.4-1 Request for a Real-Time Service Arrives (Part 1 of 2) 3-46
3.2.4.4.4-2 Request for a Real-Time Service Arrives (Part 2 of 2) 3-47
3.2.4.4.4-3 Parameter Server and Telemetry Subsystem Event Trace 3-48
3.2.4.4.4-4 Command Subsystem Event Trace.. 3-49
3.2.4.4.4-5 Real-Time Contact Management Subsystem .. 3-50
3.2.4.5.4-1 Execution of String Connection Request on the Workstation Event Trace 3-53
3.2.4.5.4-2 Creation of Mirrored Telemetry Subsystem on the Workstation Event Trace .. 3-54
3.2.4.6.4-1 Execution of String Connection Request on the Real-Time Server Event Trace 3-56
3.2.4.6.4-2 Creation of Telemetry Subsystem.. 3-57
3.2.4.7.4-1 Request for Command Authority Arrives on the Workstation Event Trace 3-59

xi 305-CD-043-001

3.2.4.8.4-1 Request for Command Authority .. 3-61
3.2.4.9.4-1 Request for Telemetry Configuration Change .. 3-64
3.2.4.10.4-1 Real-Time Server Event Trace ... 3-66
3.2.4.11.4-1 Request for Dedicated Replay Telemetry .. 3-68
3.2.4.12.4-1 Workstation from Analysis Event Trace ... 3-70
3.2.4.13.4-1 Request for a String Failover Arrives on the Workstation Event Trace 3-72
3.2.4.14.4-1 Request for String Deactivation Arrives on the Real-Time Server Event Trace 3-75
3.2.4.15.4-1 Request for String Activation Arrives on the Real-Time Server Event Trace 3-78
3.2.4.15.4-2 Command State Change Event Trace .. 3-79
3.2.4.15.4-3 Telemetry State Change Event Trace ..3-80
3.2.4.15.4-4 Real-Time Contact Management and Ground Script Controller 3-81
3.3.1-1 RMS Resource Monitor Component Context Diagram 3-125
3.3.3-1 RMS Resource Monitor Component Object Model ... 3-128
3.3.3-2 RMS Resource Monitor Component FrGrUsMonitorRequest Object Model.. 3-129
3.3.3-3 RMS Resource Monitor Component FrGrSwMonitorRequest Object Model .3-131
3.3.4.2.4-1 Request for User Station Monitoring...3-135
3.3.4.3.4-1 Resource Monitor Event Trace... 3-137
3.3.4.4.4-1 Failed Hardware Status ... 3-139

Tables

3.2.2 RMS String Manager Component Interfaces .. 3-9
3.3.2 RMS Resource Monitor Component Interfaces... 3-126

Abbreviations and Acronyms

Glossary

xii 305-CD-043-001

This page intentionally left blank.

1-1 305-CD-043-001

1. Introduction

1.1 Identification
The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL item 046
305/DV2 under Contract NAS5-60000.

1.2 Scope
The Flight Operations Segment (FOS) Design Specification defines the detailed design of the FOS.
It allocates the level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 046, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated December
6, 1994. It covers releases A and B for FOS. This corresponds to the design to support the AM-1
launch.

1.3 Purpose
The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule
This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. This document is under the ECS Project configuration
control.

1.5 Document Organization
305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.

305-CD-042 contains the detailed design for Command Management Design Specification.

305-CD-043 contains the detailed design for Resource Management Design Specification.

305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Real-Time Contact Management Design
Specification.

1-2 305-CD-043-001

305-CD-047 contains the detailed design for Analysis Design Specification.

305-CD-048 contains the detailed design for User Interface Design Specification.

305-CD-049 contains the detailed design for Data Management Design Specification.

305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

2-1 305-CD-043-001

2. Related Documentation

2.1 Parent Document
The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for
the ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for
the ECS Project, Volume 2: AM-1 Mission Specific

2.2 Applicable Documents
The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS)
and ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS)
and the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System
(EOS) AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM1 Project Spacecraft Software
Development and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schema for the ECS Project

502-ICD-JPL/GSFC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Jet Propulsion Laboratory and the Goddard
Space Flight Center for GSFC Missions Using the Deep Space
Network

2-2 305-CD-043-001

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Mission
Operations Centers and the Network Control Center Data System

530-ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

530-DFCD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Data Format control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

540-041 Interface Control Document (ICD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

560-EDOS-0230.0001 Goddard Space Flight Center/MO&DSD, Earth Observing System
(EOS) Data and Operations System (EDOS) Data Format
Requirements Document (DFRD)

ICD-106 Martin Marietta Corporation, Interface Control Document (ICD)
Data Format Control Book for EOS-AM Spacecraft

none Goddard Space Flight Center, Earth Observing System (EOS)
AM-1 Flight Dynamics Facility (FDF) / EOS Operations Center
(EOC) Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design
Specification.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS
Project

308-CD-001-004 Software Development Plan for the ECS Project

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the
ECS Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/
95

604-CD-002-001 Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

2-3 305-CD-043-001

604-CD-003-001 ECS Operations Concept for the ECS Project: Part 2A -- ECS
Release A, Final, 7/95

194-WP-912-001 EOC/ICC Trade Study Report for the ECS Project, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, Working Paper

194-WP-920-001 An Evaluation of OASIS-CC for Use in the FOS, Working Paper

194-TP-285-001 ECS Glossary of Terms

222-TP-003-006 Release Plan Content Description

none Hughes Information Technology Company, Technical Proposal for
the EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document
(IRD) Between the Earth Observing System (EOS) Data and
Operations System (EDOS), and the EOS Ground System (EGS)
Elements, Preliminary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-4 305-CD-043-001

This page intentionally left blank.

3-1 305-CD-043-001

 3. Real-Time Resource Management Subsystem

The Real-Time Resource Management Subsystem (RMS) is one of four real-time subsystems that
reside on the Real-Time Servers (RTS) and/or the User Workstations within the EOC. Select real-
time subsystems will also be included in the Instrument Support Toolkit (IST) that is executed at
remote locations outside of the EOC. The RMS resides on both of the EOC hosts as well as within
the IST and provides management and control functions for the remaining real-time subsystems.
The real-time Server provides a single location where real-time telemetry monitoring occurs. The
command processing is coupled with this monitoring due to the dependency of telemetry
processing for command and telemetry verification. The real-time architecture, facilitated by the
RMS, is based on providing logical strings, which manage the real-time resources. A logical string
is a collection of hardware and software resources, and information about how these resources are
being used within the EOC, to provide spacecraft and instrument control and monitoring during
real-time contacts, simulations, and historical replays. A unique logical string exists for each real-
time scenario (i.e., contact, simulation, and historical replay). There are five attributes of a logical
string that make it unique. These attributes include:

• a spacecraft identifier which marks a logical string for support of a specific mission

• a operational database identifier which indicates the database version used in configuration
of the software in a specific logical string

• the data source which indicates the origin of the telemetry data being monitored within the
logical string (i.e., real-time, simulation, historical replay)

• the mode attribute which indicates the intended use of the logical string (i.e., operational,
test, training)

• and the state attribute which indicates if a logical string in the operational mode is actively
performing its intended function (active), or if it exists only to perform its intended function
in the event of a hardware or software failure in the active string (backup)

The number and type of resources managed within a given logical string can vary based on the
characteristics listed above. For example, a historical replay logical string requires only real-time
Telemetry processes for the purpose of decommutating the historical data, while real-time,
operational logical strings that monitor real-time contacts require a full complement of Telemetry,
Command and Real-time Contact Management subsystem processes as well as FUI Ground Script
Controller, DMS Archiver and Parameter Server processes.

Of the four real-time subsystems, the Resource Management Subsystem (RMS) is the only one that
is considered permanent or persistent. In other words, as long as there is a real-time server or user
workstation in operation within the EOC, or an IST running outside of the EOC, the RMS is
available to provide service to its users. The RMS provides a level of control and management for
the real-time subsystems as well as additional select subsystem processes that provide a mission
critical function within the EOC. The RMS is responsible for providing real-time software
resources and failure recovery capabilities in response to user requests.

One of the more important functions of the Resource Management Subsystem is that of privilege

3-2 305-CD-043-001

management. Command Authority and Ground Control Privilege are designations bestowed on
users to act in critical roles within the EOC. Command Authority is granted to one EOC user per
command destination for the purpose of sending real-time commands to a spacecraft. This
privilege is managed within a logical string to ensure that there is a single point of command for
an EOC spacecraft. The Ground Control Privilege is granted to one EOC user per logical string
for the purpose of modifying the ground configuration of the hardware and software resources
within that logical string. These privileges are granted only to users that are pre-authorized by the
Flight Operations Team to perform in these roles. Further, these privileges are granted only to
users signed on to User Workstations within the EOC.

The design documentation that follows describes two types of RMS subsystems, the Real-Time
Server RMS and the Workstation RMS . These subsystems are named according to where they
reside and differ in that they serve complementary functions. The Real-Time Server RMS is made
up of two executable processes, the String Manager and the Resource Monitor. The Workstation
RMS employs only the String Manager process. These subsystems work together to provide the
EOC user with control of real-time resources as well as global visibility into the real-time activities
within the EOC.

Users of the EOC wishing to create a logical string to monitor a real-time contact will allocate
resources on a Real-Time Server in order to allow multiple users to simultaneously connect to, or
access that information from different workstations. The string that is created is termed a shared
service or shared logical string. In this scenario, a logical string is created on a Real-Time Server
by a RTS RMS String Manager process. This action is taken in response to a request received by
a Workstation RMS String Manager process and forwarded to the Real-Time Server. Information
is returned to the requesting workstation after the new logical string is created, and the Workstation
RMS, in turn, provides that information to the user display. This scenario is discussed in further
detail in sections 3.2.4.3 and 3.2.4.4 of this document.

Users of the EOC can also request dedicated services or dedicated logical strings. An example of
a dedicated logical string is that of a dedicated historical replay. In this scenario, a user would
simply request the dedicated service, and resources that reside only on that user's workstation
would be employed to provide the requested service. Other users would not have visibility into,
or knowledge of that user's activities, nor would other users be able to connect to, or otherwise
access that activity. In other words, the activity is dedicated to a single EOC user. Shared replays,
using shared logical strings can also be established for multiple users. The dedicated replay
scenario is discussed in further detail in section 3.2.4.11 of this document.

When a logical string exists on a Real-Time Server it is shareable by definition. When an EOC
user connects to a logical string, that user is provided a set of telemetry processes to execute on his
local workstation, equal in number to those that are executing within the selected logical string on
the Real-Time Server. The user must decide at connect time if he wants to control the ground
configuration of the processes that are running on his local workstation or simply take the ground
configuration and of the processes running on the Real-Time Server. To make this selection, the
user must connect to the logical string in one of two ways: by mirrored connection or by tailored
connection. These connection methods are described in the paragraphs that follow.

When a user requests a mirrored connection to a logical string, that user is provided the same
telemetry ground configuration as the telemetry processes running on the Real-Time Server.

3-3 305-CD-043-001

Changes to the ground configuration on the Real-Time Server can only be made by a single user
per logical string with the Ground Control Privilege. After a mirrored user connects to a logical
string, all subsequent changes to the ground configuration of the logical string are made to the
telemetry processes on the user's local workstation as well. Thus, the ground configurations of the
telemetry processes on the Real-Time Server and those that execute on the User Workstation are
synchronized. A benefit of the mirrored connection is that the user of this connection is eligible to
request Ground Control Privilege for the logical string to which he is connected. If this user is pre-
authorized for that privilege, he can potentially control the ground configuration of the telemetry
processes that execute on the Real-Time Server for this logical string. It is not required, however,
that the mirrored user serve in this capacity. Mirrored logical string connections will be the
nominal connection type of choice among EOC users.

When a user requests a tailored connection to a logical string, that user is initially provided the
same telemetry ground configuration as the telemetry processes running on the Real-Time Server.
Upon connection however, the tailored user controls the ground configuration for the telemetry
processes created on his local workstation independent of any privilege. Changes made by this
user affect his local processes only. Further, this user is not eligible to gain the Ground Control
Privilege that would allow him to modify the ground configuration of the telemetry processes
running on the Real-Time Server for this particular logical string. Tailored logical string
connection will be the nominal connection type of choice among IST users.

Ground Control Privilege, much like Command Authority, is requested by EOC users and granted
by the RMS to users that are pre-authorized by the Flight Operations Team to have this privilege
for the given mission supported in a given logical string.

3.1 Resource Management Subsystem Context
Upon system startup of a Real-Time Server, the Resource Management Subsystem will request and
receive a default configuration procedure from the Data Management Subsystem. The default
configuration file will convey to a given RMS, information about the real-time spacecraft contacts
and backup processing for which it will be responsible. This file will convey to the RMS the same
information that a user entering a real-time service request would provide. This allows the same
RMS software to be used to respond to the service request whether the origin is an EOC user or
default configuration file.

When a logical string is requested by the FOS User Interface Subsystem and subsequently created
by the Resource Management Subsystem, the supporting software processes will be created as
needed and configured for the specific purpose they are to fulfill. Software processes created by
the RMS include Telemetry, Command, and Real-Time Contact Management subsystems, as well
as Archive, Ground Script Control and Parameter Server processes. Additional configuration
information can be conveyed to these subsystems after system startup on an as needed basis. User
directives from FUI can be sent to RMS, where they will be forwarded to the appropriate support
subsystem for action. Directive completion status's will be returned through RMS and returned to
FUI for display. Any information received by the support subsystems that modify the ground
configuration, is also sent by RMS to any backup logical strings that may exist. In the case of real-
time Telemetry processes, the configuration changes are also forwarded to the Telemetry processes
of mirrored users. This allows RMS to ensure configuration synchronization between active and
backup strings and between Telemetry processes on User Workstation and Real-Time Servers. In

3-4
305-C

D
-043-001

RMS

DMS

RMS

PS

CSMS

FUI

TLM

ANA

CMD

Ground
Script

Controller

RCM

This System

Events\Db Requests
Request Responses
Db Request Responses

Replay Requests
Terminate String Requests

ConfigSnapShot

ConfigInfo
SnapShot Request

Request
Responses

Query
Responses

Requests

ConfigInfo/Requests

SnapShot

PIDs/StringIDRequests

ConfigInfo/
Requests

SnapShot

ConfigInfo

StringTableInfo
& Requests
Startup Info

Status

Requests

Responses

Requested
Data

 Directory
Name Service

Queries

Register
Unregister

Authorization
Requests

DNS Queries

3.1-1. Resource Management Subsystem Context Diagram

3-5 305-CD-043-001

the event of hardware or software failure the user would be notified of the failure, and issue a
request for string failover via a FUI request window. The backup string established prior to the
failure will assist RMS in restoring user capabilities with minimal interruption.

The CSMS/SCDO Management Subsystem will be integrated with the DMS Event Handler to
provide the capability to monitor the hardware and software components of the EOC for changes
in operational status. When new software resources are employed by RMS, MSS functions are
invoked to register the new resources for monitoring. When changes in resource status's are
detected by the MSS Monitoring service, a management event is generated by the MSS service and
forwarded to the DMS Event Handler. The Parameter Server is informed of selected status changes
via a proxy interface with the Event Handler. The Parameter Server in turn provides information
about status parameters to the RMS and any other FOS application that registers an interest.

Both the Data Management and Analysis Subsystems have interface proxies from RMS for the
purpose of sending requests for historical telemetry replay. Upon request, RMS provides telemetry
subsystem resource(s) on a RTS or User Workstation to facilitate processing of historical
telemetry. Requests for this service will originate from the user via the Data Management
Subsystem if the user wishes to monitor the replay, or via the Analysis Subsystem if the user wishes
to have off-line analysis performed on the historical data. In either case, the RMS provides an
identical service of telemetry parameters to the Parameter Server allocated for the request. The
Parameter Server, in turn serves the desired data upon request by the end-user subsystem.

3.2 RMS String Manager Component
The Resource Management Subsystem String Manager Component is designed to be installed and
executed on the Real-Time Servers and all User Workstations within the EOC as well as all ISTs
at remote locations outside of the EOC. The role that the RMS plays differs however, depending
on its host.

When the String Manager Component is executed on a Real-Time Server, it serves several
important functions. These functions include: responding to requests dealing with management
of shared logical strings and user privileges; accessing the default configuration procedures and
executing startup logical string requests; and communicating with the Resource Monitor
Component (this is unique to the RTS RMS because the Resource Monitor Component is not
executed on the User Workstations). The roles of the Real-Time Server RMS process are
explained in the scenarios described in Section 3.2.4.1, .4, .6, .8, .10, .14, and .15.

The Workstation RMS String Manager processes serve a number of unique and important
functions within the real-time architecture as well. These functions include: fielding and
responding to user requests, from the FOS User Interface Subsystem, the Data Management
Subsystem and the Off-line Analysis Subsystem; synchronizing telemetry configurations with
backup logical strings and mirrored logical string connections; coordinating requests that affect
multiple Real-Time Servers; granting and managing dedicated service requests; and employing
CSMS/MSS services for user authorization lookups. The roles of the Workstation RMS process
are explained in the String Table Parameters to Parameter Server scenarios described in Sections
3.2.4.1, .3, .5, .7, .9, .11, .12, and .13.

3-6 305-CD-043-001

3.2.1 RMS String Manager Component Context

Upon execution of the RMS String Manager Component the first task is to determine what type of
machine is host to the component. This is determined through a query to the CSMS/CSS Directory
Naming Service. The host type determines the role that the String Manager Component is to play.
These roles were described briefly in the preceding paragraphs in Section 3.2. The Workstation
String Manager and Real-Time Server String Manager Component contexts are described in the
paragraphs that follow and are illustrated in Figure 3.2.1-1.

The Workstation String Manager is responsible for receiving and responding to all user requests.
Most user requests are received directly from the FOS User Interface Subsystem, while some
dedicated service requests are received via the Data Management and Off-line Analysis
subsystems. In cases where shared resources are involved, the Workstation String Manager is
responsible for forwarding user requests to Real-Time Servers and coordinating activities between
those servers (and their corresponding RTS String Manager Components) to ensure that
configuration synchronization throughout the system is maintained.

When a user requests the Command or Ground Control privilege, the Workstation String Manager
component has an additional responsibility. Before forwarding the privilege request to the RTS
RMS for action, the Workstation String Manager first determines if the user is authorized to receive
the privilege. A CSMS/CSS Authorization Service is queried with a privilege type and user
identifier in order to determine if the requesting user is pre-authorized by the Flight Operations
Team to serve in the requested capacity. If is user is authorized, the request will be forwarded to
the RTS String Manager for action. Otherwise, a response is returned to the FUI process that
generated the request and an event is generated indicating that the request was denied. (This
request will be translated by the Data Management Subsystem into a management event that will
be reported to the MSS Management Agent as a reportable security event.)

The Workstation String Manager is directly responsible for creating logical strings to support
dedicated service requests and connection requests only. Therefore, the Telemetry subsystem is
the only real-time subsystem that the Workstation RMS creates and configures in response to these
service requests. Telemetry components are created in response to dedicated replay requests from
the Data Management Queue Manager and the Off-line Analysis Request Manager, as well as in
response to user connection requests to any shared logical string. Detailed scenarios describing the
Workstation String Manager role in providing this service can be found in Sections 3.2.4.5 and
3.2.4.6.

If upon system startup the String Manager Component determines that it's host is a Real-Time
Server, it's next task is that of accessing the database information and default configuration files
that are stored by the Data Management Subsystem. The database information file provides startup
configuration information for the Resource Management Subsystem. The default configuration
file contains information about active missions that the EOC is supporting. The String Manager
Component accesses this file and executes any startup logical string requests that may exist in that
file for it's host system. This function allows for the monitoring of a real-time contact independent
of an operator in the EOC with an active logical string connection.

Real-Time Server String Manager Components respond to user requests forwarded by the
Workstation String Manager Components dealing with creation and maintenance of shared logical
strings and user privileges. As shown in the RMS String Manager Component Context Diagram

3-7 305-CD-043-001

in Figure 3.2.1-1, the RTS String Manager does not have an interface with the FOS User Interface
Subsystem. All user requests and responses are filtered through the Workstation String Manager
Component.

Upon request for a logical string to monitor a real-time EOS spacecraft contact, the RMS String
Manager Component will create a full complement of software components to satisfy that request.
The software components that are created and configured in this scenario include: a real-time
Telemetry subsystem, a real-time Command subsystem, a Real-Time Contact Management
subsystem, a Ground Script Controller process, a number of DMS Archive processes, and a
Parameter Server process. In the event of a request for a backup logical string, the real-time
subsystem processes will need to be synchronized with a full complement of similar processes on
another Real-Time Server. While it is the responsibility of the Workstation String Manager
Component to coordinate this activity, it is the responsibility of the RTS String Manager processes
to respond to a snapshot request and load messages to affect this synchronization process. The
identical snapshot request and load scenario is performed for backup logical string creation and
mirrored string connection. This scenario is explained in detail in Sections 3.2.4.5 and 3.2.4.6
describing mirrored logical string connection.

Communicating with the RMS Resource Monitor Component is unique to the RTS String Manager
Component because the Resource Monitor Component is not executed on the User Workstations.
The Resource Monitor Component is responsible for mission critical component monitoring. It
should be reiterated that there is no mission critical real-time processing on User Workstation
within the EOC or ISTs outside of the EOC. Only Real-Time Servers act as host to mission critical
real-time processing. For this reason, Resource Monitor Components are installed and execute
only on Real-Time Servers within the EOC.

Both the Workstation and Real-Time Server String Manager Components use the CSMS/CSS
Directory Naming Service for host information and therefore, a CSMS interface is illustrated on
both sides of the Context Diagram in Figure 3.2.1-1.

3-8
305-C

D
-043-001

String
Manager

(WS)

String
Manager

(RTS)

FUI

DMS

TLM

DMS

CMD

TLM

RCMCSMS

RMS:
Resource
Monitor

Ground
Script

Controller

Analysis

PS

CSMS

PS

This System This System

Requests

Parameters
StringTable

RequestStatus

QueryDbId, Events
GetOperDb

Request Responses

DbId, OperDb
ReplayRequests

Terminate String Requests

ConfigInfo

LookupUserAuthorization
LookupWksAuthorization

DNS Queries

RequestResponse
Query Response

StringTableUpdate
RequestCompletion
SnapshotCompNotif
StringStateUpdate

StringTableUpdateRequest
ForwardedRequests

QueryDbId
GetDefConfigProc

GetOperDb, Events
DataArchiverConfigInfo

ConfigInfo
SnapshotReq

ConfigSnapshot

ConfigInfo
SnapshotReq

ConfigSnapshot

ConfigInfo
SnapshotReq

ConfigSnapshot

MonitorProcessId
MonitorWks

StopMonitorPID
StopMonitorWks

DbId
OperDb

DefConfigProc

ConfigInfo

Telemetry PID
StringID

DedicatedReplayRequest
TerminateStringRequest

StringTableParameters DNS Queries
Query Response

Startup Info

Figure 3.2.1-1. RMS String Manager Component Context Diagram

3-9 305-CD-043-001

3.2.2 RMS String Manager Component Interfaces
Table 3.2.2 RMS String Manager Component Interfaces (1 of 3)

Interface Service Interface Class Interface
Class

Description

Service Provider Service User Frequency

Configuration of
Data Archiver

FdDfRms
Config
Proxy

Enables RMS
to configure
the data
archiver

 Data
 Archiver RMS

0-4 per string
creation
~ 8 per shift

Configuration of
TLM Dump process

FtTl
Dump
Config

Enables RMS
to configure a
TLM dump
process

 TLM RMS
1 per RT
string
creation
~ 2 per shift

Configuration of
TLM Decomm
process

FtTl
Telemetry
Config

Enables RMS
to configure a
TLM decomm
process

 TLM RMS
1 per TLM
type per
string
creation or
connection
~ 12 - 35 per
shift

Sending config. to
GSC

FuCcGsc
Proxy

Enables RMS
to configure
the GSC

 GSC RMS
1 per RT or
SIM string
creation
~ 2 per shift

Configuration of
CMD Format
process

FoGnRms
Format
Proxy

Enables RMS
to
configure the
CMD Format
process

 CMD RMS
1 per RT or
SIM string
creation
~ 2 per shift

Configuration of
CMD Fop process

FoGnCmdRmsFop
Proxy

Enables RMS
to configure
the CMD Fop
process

 CMD RMS
1 per RT or
SIM string
creation
~ 2 per shift

Configuration of
CMD Transmit
process

FoGnRms
Transmit
Proxy

Enables RMS
to configure
the CMD
Transmit
process

 CMD RMS
1 per RT or
SIM string
creation
~ 2 per shift

Configuration of
RCM process

FoGnRms
RcmProxy

Enables RMS
to configure
an RCM
process

 RCM RMS
1 per RT or
SIM string
creation
~ 2 per shift

Reads requests
sent by the RMS
String Mgr.

FrGrStrmanResMon
IF

Enables the
RMS
Resource
Monitor to
read requests
from String
Mgr.

 RMS
Resource Monitor

 RMS
String Mgr.

30 - 100 per
contact

3-10 305-CD-043-001

Receive WS or
RTS RMS requests

FrGrRms
WsRmsIF

Enables the
respective
RMS to
receive
requests

 WS/RTS
 RMS

 WS/RTS
 RMS

30 -100 per
contact

Receives requests
from FUI, DMS or
ANA

FrGr
Request
Handler

Enables RMS
to receive
requests

 RMS FUI
 ANA
 DMS

 1 - 10 per
shift

Authorization and
Name Service
Queries

FoGnCsms
IF

Enables RMS
to interface
with CSMS
name service
authorization

 CSMS RMS 1 per service
or
connection
request

Gets and Sets
parameters from/to
PS

FoPsClient
IF

Enables RMS
to interface
with PS

 PS RMS 30 -100 per
contact

Accessing files in
DMS

FoDsFile
Accessor

Enables RMS
to access
files within
DMS

 DMS RMS 1 - 5 per week

Send replay
requests to RMS

FrGrReplayRequest
Proxy

Enables
external
Subsystems
to send
replay
requests

 RMS

 DMS
 FUI
 ANA

1 - 10 per shift

Send requests to
RMS

FrGrRms
FuiRequest
Proxy

Enables FUI
to send all
types of
requests

 RMS

 FUI 30 - 100 per

contact

RTS RMS to WS
RMS Interface

FrGrRts
Rms
Request
Proxy

Enables the
RTS RMS to
send
requests to
WS RMS

 WS RMS

RTS RMS 30 - 100 per
contact

RTS RMS to
Resource Monitor
Interface

FrGrStr
ManRes
MonProxy

Enables the
RTS RMS to
send
requests to
Resource
Monitor

Resource
Monitor

RTS RMS 30 - 100 per
contact

Table 3.2.2 RMS String Manager Component Interfaces (2 of 3)
Interface Service Interface Class Interface

Class
Description

Service Provider Service User Frequency

3-11 305-CD-043-001

3.2.3 RMS String Manager Component Object Model

Figure 3.2.3-1 illustrates a top level view of the RMS String Manager Component. Subsequent
Figures illustrate, in more detail, specific objects as noted on Figure 3.2.3-1. The objects shown
on Figure 3.2.3-1 allow the RMS to create, configure, and reconfigure string software resources.

Two types of Rogue Wave objects are utilized to facilitate the String Manager in performing its
tasks. These include the RWSet object and the RWCString object. The RWSet object is a
collection class that can store other String Manager objects. The RWCString object is used to
manage character sets.

There are several "proxy" and "receiver classes" shown on the object model to facilitate
communication with other RMS processes. The FrGrWsRmsRequestProxy allows a WS RMS to
send Request objects to the RTS RMS. This proxy class will receive a status on each request it
sends to a RTS RMS. For every RTS that is used, there will be a FrGrWsRmsRequestProxy that
is stored in a RWSet. Each RTS RMS contains a FrGrRtsRmsRequestProxy that allows the RTS
RMS to send Request objects to the WS RMS. Like the FrGrWsRmsRequestProxy, the
FrGrRtsRmsRequestProxy will receive a status on each request it sends to a RTS RMS. The
FrGrRtsRmsRequestProxy provides the capability to multicast objects to every WS RMS when
necessary. This will mainly be used to multicast the RTS RMS String Table. Both the WS RMS
and the RTS RMS will have a FrGrRmsWsRmsIF object for receiving objects from either a
FrGrWsRmsRequestProxy or a FrGrRtsRmsRequestProxy. When an object is received, it will
place it in a Request Queue. The queue will be implemented with a RWSet. The FrGrController
will call the FrGrRmsWsRmsIF object's CheckQueue operation to retrieve an object from the
queue. The FrGrStrManResMonProxy class will allow the String Manager to send Requests to the
RMS Resource Monitor.

Other proxy and receiver classes shown on the object model allow the String Manager to
communicate with external subsystems. The FoPsClientIF object enables the String Manager to
provide string table parameters. The FoGnCsmsIF objects enables the String Manager to utilize
the CSMS name server as well as utilize CSMS security operations. Security operations could
include ensuring whether a user is permitted to have command or ground control authority. The
FdEvEventLogger object enables the String Manager to send events to DMS. The
FoDsFileAccessor enables the String Manager to access files within DMS. The FuCcGscProxy
object enables the String Manager to send requests to the Ground Script Controller process. The

Sends event
messages to event
logger

FdEvEventLogger Enables RMS
to log event
messages

 DMS RMS 30 - 100 per
contact

WS RMS to RTS
RMS Interface

FrGrWs
Rms
Request
Proxy

Enables the
WS RMS to
send
requests to
the RTS RMS

RTS RMS WS RMS 30 - 100 per
contact

Table 3.2.2 RMS String Manager Component Interfaces (3 of 3)
Interface Service Interface Class Interface

Class
Description

Service Provider Service User Frequency

3-12
305-C

D
-043-001

FrGrRequest

FrGrController

FrGrString

FrGrSoftware

FrGrTelemetry

FrGrRTContact

FrGrRmsWsRmsIF

FrGrStrManResMonProxy

RWSet

myDefConInfo

RWSet

myStringTable

RWSet

myFrGrWsRmsRequestProxySet

FoGnCsmsIF

see Figure 3.2.3-7,8,9,10,11,12,13,14

myStringID

FrGrDedicatedReplayString

FrGrSharedReplayString

FrGrSimulationString

FrGrRealtimeString

myUserList
myMirroredWsList
myTailoredWsList
myGCid
myGCwsID
myRTSid

myActiveStringID
myState

RWSet

RWSet

RWSet

myUserList

myMirroredWsList

myTailoredWsList

RWCString

RWCString

RWCString

myUserId

myWksId

myWksId

string objects only
contain set and get

operations

all objects can
generate events

FrGrGroundScriptController

myCommand
myRTContact
myGsc
myCAid
myCAwsID
myMode

myDbId
myScId
myState
myRmsAddress

Stop()

see Figure 3.2.3-3

see Figure 3.2.3-2

FdEvEventLogger

FoPsClientIF

see Figure 3.2.3-4

FrGrWsRmsRequestProxy

FrGrRtsRmsRequestProxy

RWSet

RequestQueue

myXDR
myRtsRmsAddress

Initialize(FrGrController* Controller, RWCString RtsId)
SendRequest(FrGrRequest* Request)
ReceiveStatus(FrGrRequest* Request)

myXDR
myMulticastAddress

Initialize(FrGrController* Controller)
SendRequest(FrGrRequest* Request, Address* WsRmsAddress)
ReceiveStatus(FrGrRequest* Request)
Multicast(FrGrRequest* Request)

myEventLogger
myHost
myRmsAddress
myRequestQueue

Initialize(FrGrController* Controller)
CheckQueue()
receiveRequest(FrGrRequest* newRequest)
sendStatus(FrGrRequest* sentRequest)

myXDR
myResMonAddress

Initialize(FrGrController* Controller)
SendRequest(FrGrMonitorRequest* Request)
ReceiveStatus(FrGrMonitorRequest* Request)

FoDsFileAccessor

GenEvent(RWCString* msg)

FrGrParameterServer

myDbId
mySCid
myParameterServer
myTelemetry

myPsPid

Start()
Stop()

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

FuCcGscProxy

myGscProxy
myStringId
myCmdAddress
myTlmAddress
myRtsId

Start()
Stop()
Reconfig(EcTInt configparam)
Reconfig(RWCString configparam)
Config()

myNameServer
myEcsSecurity
mySoftwareRegister

UnregisterSw(EcTInt Pid)
RegisterSw(EcTInt Pid)
CheckUserAuthorization(RWCString UserId, RWCString Role)
CheckHwAuthorization(RWCString HwId, RWCString Role)
QueryRole()
CountRts()

myHost
myOperationalDB
myDefConInfo
myDefConFile
myStringTable
myRtsRmsRequestProxy
myFdEvEventLogger
myCurrentFrGrWsRmsRequestProxy
myFrGrStrManResMonProxy
myFrGrRmsWsRmsIF
myFrGrWsRmsRequestProxySet
myFoPsClientIF
myFrGrRequestHandler
myFileAccessor
myFoGnCsmsIF

initialize()
run()
setRole()
MakeFdDsFileAccessor()
makeFdEvEventLoggerobject()
makeFrGrRmsWsRmsIFobject()
makeDefConInfo()
reqDefConFile()
loadDefConInfo()
makeStringTable()
exDefConDirs()
MakeFrGrRtsRmsRequestProxy()
makeFrGrWsRmsRequestProxies()
makeFrGrWsRmsRequestProxy(EcTInt RMSnodeID)
queryRTSstrings()
makeFrGrRequestHandler()
makeStrManResMonProxy()
receiveRequest(FrGrRequest* receivedRequest)
makeFoPsClientIF()
makeFoGnCsmsIFobject()

FrGrCommand

FrGrRequestHandler

see Figure 3.2.3-5

e

e

e

 - : int

 - : RWSet*
 - : RWSet*
 - : RWSet*
 - : RWCString
 - : RWCString
 - : RWCString

 - : RWCString
 - : int

e

e

e

e

e

e

 - : FrGrCommand*
 - : FrGrRTContact*
 - : FrGrGroundScriptController*
 - : RWCString
 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString
 - : enum
 - : Address*

± : EcTInt

e

 - : XDR
 - : Address*

 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : XDR
 - : Address*

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : FdEvEventLogger*
 - : RWCString
 - : Address*
 - : RWSet*

 + : EcTInt
 + : FrGrRequest*
 + : EcTInt
 + : EcTInt

 - : XDR
 - : Address*

 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : RWCString
 - : RWCString
 - : FrGrParameterServer*
 - : FrGrTelemetry*

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : FuCcGscProxy*
 - : EcTInt
 - : Address*
 - : Address*
 - : int

 + : EcTInt

± : EcTInt
 + : EcTInt
 + : EcTInt
 ± : EcTInt

 - : Directory_Naming_Service*
 - : ECSSecurity*
 - : SoftwareRegister*

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : RWCString
 + : EcTInt

 - : RWCString
 - : RWCString
 - : RWSet*
 - : RWCString
 - : RWSet*
 - : FrGrRtsRmsRequestProxy*
 - : FdEvEventLogger*
 - : FrGrWsRmsRequestProxy*
 - : FrGrStrManResMonIF*
 - : FrGrRmsWsRmsIF*
 - : RWSet*
 - : FoPsClientIF*
 - : FrGrRequestHandler*
 - : FoDsFileAccessor*
 - : FoGnCsmsIF*

 + : EcTInt
 + : EcTVoid
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 + : EcTInt
 - : EcTInt
 - : EcTInt

created by

created by

created by

processes

configures

creates

contained by

created
by

contained by

creates

created by

created by

created by

contained by

created by

creates

created by

sends

sends

updates

created by

contained by

created by

Figure 3.2.3-1. RMS String Manager Component Object Model

3-13 305-CD-043-001

FrGrRequestHandler object is a receiver object. This object receives objects from FUI, DMS, and
Analysis. These objects are shown in Figure 3.2.3-6. Figure 3.2.3-5 illustrates the
FrGrRequestHandler object in much more detail.

There are several string objects shown on the diagram. These objects contain string related
information as well as pointers to String Manager software resource objects. String object
operations are limited to "set" and "get" operations. The FrGrString object is an abstract class that
only contains a String ID. The FrGrDedicatedReplayString is created when a user wishes to create
telemetry processes on a workstation with a configuration dedicated solely to the user. The
configuration would not be shared by other users. The FrGrSharedReplayString is created when a
user creates telemetry processes on a RTS with a configuration that is shared by additional users.
These users are tracked by the corresponding User and Workstation Lists associated with the
object. The FrGrSimulationString is created when a user wishes to create a simulation string. This
string will have similar attributes to a FrGrRealtimeString. The FrGrRealtimeString will contain
additional attributes for identifying it as a backup or active string. If the FrGrRealtimeString is a
backup string, it identifies the string that it is backing up. The FrGrRealtimeString is the only
string that will be backed up or failed over by the String Manager. When a string object is created,
it is placed in a string table. The string table is implemented with a RWSet collection class.

Many of the objects shown on the diagram will be used to identify string resources. The
FrGrSoftware object is an abstract object. It contains attributes and a Stop operation that is
inherited by other string resource objects. The FrGrGroundScriptController object is used to start,
stop, configure, and modify the configuration of the FUI Ground Script Controller process. The
FrGrRTContact object is used to start, stop, configure, and modify the configuration of the RCM
processes. In addition, it enables the String Manager to take a configuration snapshot of the RCM
processes. This configuration snapshot is used to configure backup RCM processes. The
FrGrRTContact object is shown in more detail in Figure 3.2.3-4. The FrGrCommand object is used
to start, stop, configure, and modify the configuration of the Command processes. In addition, it
enables the String Manager to take a configuration snapshot of the Command processes. This
configuration snapshot is used to configure backup Command processes. The FrGrCommand
object is shown in more detail in Figure 3.2.3-3. The FrGrTelemetry object is used to start, stop,
configure, and modify the configuration of the Telemetry processes. In addition, it enables the
String Manager to take a configuration snapshot of the Telemetry processes. This configuration
snapshot is used to configure backup or mirrored Telemetry processes. The FrGrTelemetry object
is shown in more detail in Figure 3.2.3-2. The FrGrParameterServer object is used to start and stop
the Parameter Server process.

The FrGrRequest object is an abstract class that contains a virtual Execute operation. Several
Request objects are derived from the FrGrRequest object and each will overwrite the Execute
operation. The Execute operation is called by the FrGrController object and is responsible for
containing all functionality or calling any subroutines necessary for processing a particular request.
The classes derived from the FrGrRequest object are shown in Figures 3.2.3-7,8,9,10,11,12,13,14.

The FrGrController object enables the String Manager to initialize itself, communicate with other
processes, and initiate the processing of requests. At initialization, the FrGrController determines
what type of host it is running on via the CSMS name server. A host can be a real-time server
(RTS) or a workstation (WS). Once the host is determined, it creates appropriate proxy objects,
receiver objects, and collection classes. If the Controller is running on a RTS, it creates default

3-14 305-CD-043-001

configuration requests from information in the default configuration file that is retrieved from
DMS. These requests are notified by the Controller to execute. Default strings are created as a
result of processing the default configuration requests. Once the Controller has initialized, it enters
a "run" state. In this state, the Controller will notify requests to execute as they are received from
other processes.

The FrGrTelemetry object is derived from the FrGrSoftware object. It contains a
FrGrTelemetryProcess object for every type of telemetry process that it needs to communicate
with. For a Real-Time Operational String, the FrGrTelemetry object would point to a full range of
FrGrTelemetryProcess objects. This would include a state check process, a dump process, and
three decommutation processes that will be used for decommutating housekeeping, health&safety,
and standby telemetry. The FrGrTelemetry object will notify the FrGrTelemetryProcess object to
start, stop, request a configuration snapshot, modify an existing configuration, configure using a
snapshot configuration file, or configure using a database. Each FrGrTelemetryProcess object is
responsible for communicating with a single telemetry process via a FtTlTelemetryConfig object
or a FtTlDumpConfig object. The decommutation and dump processes require a DMS Data
Archiver process to be configured in order for the incoming telemetry data to be archived. If the
FrGrTelemetryProcess is associated with a decommutation or dump process on the RTS, the
FrGrDataArchiver object is created. This object is responsible for starting, stopping, and
configuring the data archive process. The FrGrDataArchiver object communicates with the Data
Archiver process via the FdCfRMSConfigProxy.

The FrGrCommand object is derived from the FrGrSoftware object. It contains a
FrGrCommandProcess object for every type of command process that it needs to communicate
with. This would include a Format process, a FOP process, and an Transmit process. The
FrGrCommand object will notify the FrGrCommandProcess object to start, stop, request a
configuration snapshot, modify an existing configuration, configure using a snapshot configuration
file, or configure using a database. Each FrGrCommandProcess object is responsible for
communicating with a single command process via a FoGnRmsFormatProxy object, a
FoGnCmdFopRmsProxy object, or a FoGnRmsTransmitProxy object.

The FrGrRTContact object is derived from the FrGrSoftware object. It contains a
FrGrRcmProcess object for every type of Real-time Contact Management process that it needs to
communicate with. This would include a NoutMgr process and an EoutMgr process. The RCM
subsystem consists of two additional processes. These are the NinMgr process and the EinMgr
process. However, the String Manager will send information to and start these processes via the
NoutMgr and EoutMgr processes. The FrGrRTContact object will notify the FrGrRcmProcess
object to start, stop, request a configuration snapshot, modify an existing configuration, configure
using a snapshot configuration file, or configure using a database. Each FrGrRcmProcess object
is responsible for communicating with a single RCM process via a FoGnRmsRcmProxy object.
The NinMgr and EinMgr processes require a DMS Data Archiver process to be configured in order
for the incoming Nascom blocks and Customer Operations Data Accounting (CODA) reports to be
archived. The NoutMgr and EoutMgr processes will be notified of the Data Archiver address when
they are started. They will pass this information to the NinMgr and EinMgr processes. In order to
create and configure the Data Archiver process, a FrGrDataArchiver object is created by the
FrGrRcmProcess object. This object is responsible for starting, stopping, and configuring a data
archive process. The FrGrDataArchiver object communicates with the Data Archiver process via
the FdCfRMSConfigProxy.

3-15
305-C

D
-043-001

FrGrTelemetry

FrGrTelemetryProcess

FrGrSoftware

myDbId
myScId
myState
myRmsAddress

Stop()

FrGrDataArchiver

FdCfRMSConfigProxy

myDbId
myScId
myPid
myRMSConfigProxy
myRmsAddress

Start()
Config()
Stop()

myDbId
myScId
myState
myRmsAddress
myDataArchiver
myTelemetryConfig
myDumpConfig
myProcessType
myFrGrTelemetry
myTlmPid
mySnapFilename

StartTLMProcess()
StopTLMProcess()
SnapTLMProcess()
ReconfigTLMProcess(RWCString configParameter)
SnapConfigTLMProcess(RWCString ConfigFile)
ConfigTLMProcess()

FtTlTelemetryConfig FtTlDumpConfig

myStateCheck
myDiagnostic
myHKDecomm
myHSDecomm
mySBDecomm
myTlmType
myDmsAddress

MakeDmsAddress()
MakeRmsAddress()
ChangeState(RWCString State)
Stop()
Reconfig(RWCString configParameters)
Snap()
Config(DiagnosticFile, HkDecommFile, HSDecommFile, SBDecommFile)
Config()

Buffer

SendDirective()
Snapshot()
Configure()
Shutdown()

send(ListenAddr,DataTypeid)
receive()

 - : RWCString
 - : RWCString
 - : enum
 - : Address*

± : EcTInt

 - : RWCString
 - : RWCString
 - : EcTInt
 - : FdCfRMSConfigProxy*
 - : Address*

 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : RWCString
 - : RWCString
 - : enum
 - : Address*
 - : FrGrDataArchiver*
 - : FtTlTelemetryConfig*
 - : FtTlDumpConfig*
 - : RWCString
 - : FrGrTelemetry*
 - : EcTInt
 - : RWCString

 +
 +
 +
 +
 +
 +

 - : FrGrTelemetryProcess*
 - : FrGrTelemetryProcess*
 - : FrGrTelemetryProcess*
 - : FrGrTelemetryProcess*
 - : FrGrTelemetryProcess*
 - : EcTInt
 - : Address*

± : EcTInt
 ± : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 -

 +
 +
 +
 +

 + : int
 + : int

starts

Figure 3.2.3-2. RMS String Manager Component FrGrTelemetry Object Model

3-16
305-C

D
-043-001

FrGrCommandProcess

FrGrCommand

FrGrSoftware

myDbId
myScId
myState
myRmsAddress

Stop()

FoGnRmsFormatProxy
FoGnCmdFopRmsProxy

FoGnRmsTransmitProxy

myMessage

GetMessage()
Config(Spacecraftid,DbId,PrimaryMode,OpMode,ParamServer,CmdFop)
Archive(enum ArchiveState {enable,disable})
SpecifyChannel(enum NewChannel {SSA, SMA, S-Band})
SpecifyAntenna(enum NewAntenna {HighGain, Omni})
SpecifyChannelAndAntenna(enum NewChannel, enum NewAntenna)
ConfigurationSnapshotRequest(RWCString* filename)
ReadConfigurationSnapshot(RWCString* filename)
Shutdown()
FoGnRmsTransmitProxy()
~FoGnRmsTransmitProxy()
SelectPrimaryMode(enum NewPrimaryMode {Active, Backup})

myProcessType
myDataType
myDbId
myScId
myState
myRmsAddress
myFrGrCommand
myCmdProcessPid
myFormatProxy
myTransmitProxy
myCmdFopProxy
mySnapFilename

StartCmdProcess()
StopCmdProcess()
SnapCmdProcess()
ReconfigCmdProcess(RWCString ConfigParameter)
SnapConfigCmdProcess(RWCString ConfigFile)
ConfigCmdProcess()

myDataType
myCmdFormat
myCmdTransmit
myCmdFop
myDmsAddress

MakeDmsAddress()
MakeRmsAddress()
ChangeState(RWCString State)
Stop()
Snap()
Reconfig(RWCSting configParameter)
Config(RWCString FormatFile, RWCString UplinkFile, RWCString FopFile)
Config()

GetConfigSnapshot()
ChangeRole(enum RoleType myRole)
StartAdWithoutClcw()
StartAdWithClcwCheck()
TerminateAd()
ResumeAd()
SelectCtiu(EcTUInt myCtiu)
SetVs(EcTUInt myVs)
SetWinWidth(EcTUInt myWinWidth)
SetTimeInitialVal(EcTULongInt myT1Val)
SetTransmissionLimit(EcTUInt myLimit)
SetTimeoutType(EcTBoolean myTimeoutType)
ShutdownFop()

SetPrereqCheckState(FcTCdPrereqCheckState)
SetCmdAuthUser(EcTInt, EcTInt)
ConfigSnapshotRequest(RWCString)
ReadConfigSnapshot(RWCString)
Shutdown()

 - : RWCString
 - : RWCString
 - : enum
 - : Address*

± : EcTInt

 - : RWCollectable

 + : RWCollectable*
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 +
 +

 - : enum
 - : enum
 - : RWCString
 - : RWCString
 - : enum
 - : Address*
 - : FrGrCommand*
 - : EcTInt
 - : FoGnRmsFormatProxy*
 - : FoGnRmsTransmitProxy*
 - : FoGnCmdFopRmsProxy*
 - : RWCString

 + : EcTInt

± : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : enum
 - : *FrGrCommandProcess
 - : *FrGrCommandProcess
 - : *FrGrCommandProcess
 - : *Address

 ± : EcTInt
 ± : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean

Figure 3.2.3-3. RMS String Manager Component FrGrCommand Object Model

3-17 305-CD-043-001

FrGrSoftware

FrGrRTContact

FrGrRcmProcess

FrGrDataArchiver

myDbId

myScId

myState

myRmsAddress

Stop()

myEoutMgr

myNoutMgr

myDmsAddress

MakeRmsAddress()

MakeDmsAddress()

ChangeState(RWCString State)

Stop()

Snap()

Reconfig(RWCString configParam)

Config(RWCString EoutFile, RWCString NoutFile)

Config()

FoGnRmsRcmProxy

myDbId

myScId

myState

myRmsAddress

myRcmPid

myRcmInPid

myDataArchiver

myProcessName

mySnapFilename

myRmsRcmProxy

myFrGrRTContact

StartRcmProcess()

StopRcmProcess()

SnapRcmProcess()

ReconfigRcmProcess(RWCString configParam)

SnapConfigRcmProcess(RWCString ConfigFile)

ConfigRcmProcess() FdCfRMSConfigProxy

myDbId

myScId

myPid

myRMSConfigProxy

myRmsAddress

Start()

Config()

Stop()

send(ListenAddr,DataTypeid)

receive()

myMessage

myMsgDestination

GetMessage(EcTVoid)

Shutdown(EcTVoid)

EdosConfig(FgTRcmStateType theRcmState, FgTRcmArchiveStateType theArchiveState)

RcmState(FgTRcmStateType theState)

ArchiveState(FgTRcmArchiveStateType theState)

CreateSnapshotFile(RWCString *theFileName)

ReadSnapshotFile(RWCString *theFileName)

InitConfig(FgTRcmStateType theState, RWCString theScid, RWCString theDbid,
EcTInt theDmsAdd r, EcTInt theParamServerAddr)

NccConfig(EcTChar theSourceID, EcTChar theDestID, RWCString theUserID, RWCString
theTdrsID , RWCString theSupportID)

SetControlAuthority(RWCString *theControlID)

 - : RWCString

 - : RWCString

 - : enum

 - : Address*

± : EcTInt

 - : FrGrEoutMgr

 - : FrGrNoutMgr

 - : Address*

 ± : EcTInt

 ± : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 - : RWCString

 - : RWCString

 - : enum

 - : Address*

 - : EcTInt

 - : EcTInt

 - : FrGrDataArchiver*

 - : RWCString

 - : RWCString

 - : FoGnRmsRcmProxy*

 - : FrGrRTContact*

 + : EcTInt

± : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 - : RWCString

 - : RWCString

 - : EcTInt

 - : FdCfRMSConfigProxy*

 - : Address*

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : int

 + : int

 - : RWCollectable

 - : EcTInt

 + : RWCollectable *

 + : EcTBoolean

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

starts

Figure 3.2.3-4. RMS String Manager Component FrGrRTContact Object Model

3-18
305-C

D
-043-001

FrGrReplayRequestProxy

FrGrRmsFuiRequestProxy

FrGrRequestHandler

myRequestQueue
myEventLogger

CheckQueue()
Initialize(FrGrController* Controller)
sendStatus(RWCollectable* sentRequest)
receiveRequest(RWCollectable* newRequest)

myRmsAddress
myXDR

GenStrDelete(RWCString UserId, RWCString WksId, EcTInt StringId)
GenRTServReq(ScId, DbId, RTSid, Mode, UserId, WksId)
GenBkupServReq(EcTInt StringId, EcTInt RTSid, RWCString UserId, RWCString WksId)
GenStringFailOverReq(UserId, WksId, FailedStringId, FailedRTSid, BackupRTSid,
BackupStringId)
GenAdjustLimitReq(UserId, WksId, StringId, ParameterId, Type, ParamValue,
TlmType, SetId)
GenCommandPriviledgeReq(RWCString UserId, RWCString WksId, EcTInt StringId)
GenGroundControlPriviledgeReq(RWCString UserId, RWCString WksId, EcTInt
StringId)
GenSimulationServReq(Mode, Scid, Dbid, RTSid, UserId, WksId)
GenStringConnectReq(StringId, UserId, WksId, TlmType, myUserType)
GenStringDisconnectReq(EcTInt StringId, RWCString UserId, RWCString WksId)
Initialize()

myRmsAddress
myXDR

Initialize()
GenStrDelete(RWCString Originator, RWCString UserId, RWCString WksId, EcTInt
StringId)
GenReplayReq(Originator, ScId, DbId, RTSid, UserId, WksId, DataType)

FrGrMessage

FrGrRequest

RWSet

FdEvEventLogger

FrGrController

see Figure 3.2.3-6

see Figure 3.2.3-1

see Figure 3.2.3-1

see Figure 3.2.3-7,8,9,10,11,12,13

 - : RWSet*
 - : FdEvEventLogger*

 + : FrGrRequest*
 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : Address*
 - : XDR

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTVoid

 + : EcTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : Address*
 - : XDR

 + : EcTInt
 + : EcTVoid

 + : EcTVoid

e

received by

creates

updates

sends sends

Figure 3.2.3-5. RMS String Manager Component FrGrRequestHandler Object Model

3-19 305-CD-043-001

The FrGrRequestHandler object is responsible for receiving a Message object from FUI, DMS, or
the Analysis Subsystem, instantiating the appropriate Request object, placing the Request object
in a queue, retrieving a Request object from the queue, and returning a status when the request has
been processed. If necessary, it can generate an event via the FdEvEventLogger object. The
FrGrReplayRequestProxy object will reside in a service user's process. For clarity, it is placed in
this object model. This proxy object can send a Replay Service Request and a String Delete
Request. The FrGrRmsFuiRequestProxy object can send requests to create strings, modify string
configurations, failover strings, delete strings, connect to strings, disconnect from strings, and take
the Ground Control or Command Authority privilege on a particular string. Figure 3.2.3-6
illustrates the Message objects that the FrGrReplayRequestProxy and the
FrGrRmsFuiRequestProxy objects will send. When the FrGrRequestHandler object receives the
Message object, it instantiates the appropriate Request object and places it in a queue. The queue
is implemented via a RWSet. When requested by the FrGrController object, a Request object is
retrieved from the queue and returned to the Controller. Figures 3.2.3-7,8,9,10,11,12,13 illustrate,
in more detail, the Request objects.

The FrGrMessage object is derived off of the RWCollectable object. This is necessary in order to
inherit needed operations for flattening objects to a stream. When an object is passed between
processes, it is flattened to a stream. FrGrMessage, FrGrStringAccessMessage, and
FrGrStringCreateMessage are abstract classes containing attributes that derived objects will
inherit. When the FrGrRequestHandler receives any of the other derived objects, it instantiates a
particular Request object. These Request objects are shown in Figures 3.2.3-7,8,9,10,11,12,13.
For example, when the FrGrRequestHandler receives the FrGrStringFailoverReqMessage, it
instantiates a FrGrStringFailoverRequest object and places it in a queue. The only operations that
the Message objects contain are "set" and "get" operations.

The FrGrStringAccessRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
FrGrStringAccessRequest contains additional attributes and a FindString operation that derived
objects will inherit. The FrGrStringConnectRequest object contains attributes and operations
necessary for connecting a user to an existing string. It will create telemetry processes on a
workstation for telemetry decommutation. The FrGrStringDisconnectRequest contains attributes
and operations necessary for disconnecting a user from a string. It will delete telemetry processes
on a workstation. The FrGrSnapshotCompNotif object is utilized when a configuration snapshot
is retrieved from RTS telemetry processes. When a user connects, the FrGrStringConnectRequest
object is forwarded from the WS RMS to the RTS RMS. The RTS RMS requests a configuration
snapshot from a telemetry process and the configuration snapshot information is written to a file
on the requesting workstation. The RTS RMS returns with the FrGrSnapshotCompNotif object.
The FrGrStringConnectRequest notifies the FrGrSnapshotCompNotif object to execute. The
FrGrSnapshotCompNotif object will create and configure the telemetry processes using the
configuration snapshot file.

The FrGrBackupServiceRequest object is derived off of the FrGrRequest object. FrGrRequest is
an abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrBackupServiceRequest object contains attributes and operations necessary for creating a
backup Real-Time Operational String. It will request configuration snapshots from active real-
time processes and configure a Real-Time Operational String using the configuration snapshot
files that were created. A backup Real-Time Operational String is necessary for failing over an
active string when a failure occurs.

3-20
305-C

D
-043-001

FrGrMessage

myOriginator
myWksId
myUserId

FrGrStrDeleteMessage FrGrCmdPrivReqMessage

myStringId

FrGrGndCtrlPrivReqMessageFrGrStrDisconnectReqMessage

FrGrBkupServReqMessage

myRTSid

FrGrRtServReqMessage FrGrSimServReqMessage

myScId

FrGrStringCreateMessage

myRTSid

myDbId
myMode

myScId
myDbId
myMode

FrGrReplayServReqMessage

myScId
myDbId
myTlmType

FrGrStringFailoverReqMessage

myFailedStringId
myFailedRTSid
myBackupStringId
myBackupRTSid

FrGrStrConnectReqMessage

myTlmType
myUserType

FrGrStringAccessMessage

FrGrAdjustLimitReqMessage

myParameterId
myType
myParamValue
myTlmType
mySetId

RWCollectable

 - : RWCString
 - : RWCString
 - : RWCString

 - : RWCString

 - : EcTInt
 - : RWCString

 - : RWCString

 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString

 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString

 - : RWCString
 - : RWCString

 - : EcTInt
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt

e

Figure 3.2.3-6. RMS String Manager Component FrGrMessage Object Model

3-21
305-C

D
-043-001

FrGrRequest

FrGrStringAccessRequest

FrGrStringConnectRequest FrGrStringDisconnectRequest

myStringId
myUserId
myWksId

findString(FrGrStringTable* PassedStringTable, int PassedStringID)

myOriginator
myCurrentString

execute(FrGrController* Controller)

FrGrSnapshotCompNotif

myStringID
myTlmConfigFilename
myTlmType

execute(FrGrController* Controller)
findString(RWSet* PassedStringTable)

removeParamServer()
removeUser()
removeUserStation()
removeAllTlm()
execute(FrGrController* Controller)

myTlmType
myUserType

createParamServer()
createTelemetry()
findTlm()
addUser()
addMirroredWS()
addTailoredWS()
execute(FrGrController* Controller)

 - : int
 - : RWCString
 - : int

± : FrGrString*

 - : RWCString
 - : FrGrString*

 + : EcTInt

 - : EcTInt
 - : RWCString
 - : enum

 + : EcTInt

± : FrGrString*

 ± : EcTInt
 ± : int
 ± : int
 ± : int
 + : int

 - : enum
 - : enum

 ± : EcTInt
 ± : int
 ± : FrGrTelemetry*
 ± : int
 ± : int
 ± : int
 + : int

Figure 3.2.3-7. RMS String Manager Component FrGrStringAccessRequest Object

3-22 305-CD-043-001

Figure 3.2.3-8. RMS String Manager Component FrGrBackupServiceRequest Object Model

FrGrRequest

FrGrBackupServiceRequest

myOriginator

myCurrentString

execute(FrGrController* Controller)

myStringId

myRTSid

myUserId

myWksId

myDiagnosticTlmConfigFilename

myHStlmConfigFilename

myFopCmdConfigFilename

myRcmConfigFilename

myHkTlmConfigFilename

mySbTlmConfigFilename

myFormatCmdConfigFilename

myUplinkCmdConfigFilename

myEoutMgrRcmConfigFilename

myNoutMgrRcmConfigFilename

myScId

myMode

myCaId

myCaWsId

myGcId

myGcWsId

createParamServer(FrGrStrManResMonIF* PassedStrManResMonIF)

createTlm(FrGrStrManResMonIF* PassedStrManResMonIF)

createCommand(FrGrStrManResMonIF* PassedStrManResMonIF)

createRcm(FrGrStrManResMonIF* PassedStrManResMonIF)

findString(FrGrStringTable* PassedStringTable, int PassedStringID)

makeString()

execute(FrGrController* Controller)

 - : RWCString

 - : FrGrString*

 + : EcTInt

 - : int

 - : int

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 - : RWCString

 +

± : int

 ± : int

 ± : int

 ± : FrGrString*

 ± : FrGrString*

 + : int

3-23
305-C

D
-043-001

FrGrRequest

FrGrStringFailoverRequest

myOriginator
myCurrentString

execute(FrGrController* Controller)

myFailedRTSid
myBackupRTSid
myUserId
myWksId
myBackupStringId
myActionFlag
myFailedStringId

execute(FrGrController* Controller)
activateCommand()
activateRTContact()
activateTelemetry()
ActivateGSC()
findTlm()
deactivateCommand()
deactivateRTContact()
DeactivateTelemetry()
DeactivateGSC()
findString(FrGrStringTable* PassedStringTable, int PassedStringID)

 - : RWCString
 - : FrGrString*

 + : EcTInt

 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt

 + : EcTInt

± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : FrGrTelemetry*
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : FrGrString*

Figure 3.2.3-9. RMS String Manager Component FrGrStringFailoverRequest Object Model

3-24 305-CD-043-001

The FrGrStringFailoverRequest object is derived off of the FrGrRequest object. FrGrRequest is
an abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrStringFailoverRequest object contains attributes and operations necessary for
deactivating a failed Real-Time Operational String and activating a backup Real-Time Operational
String.

The FrGrGroundControlRequest object is derived off of the FrGrRequest object. FrGrRequest is
an abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrGroundControlRequest is an abstract class that Configuration Change Requests will be
derived from. The FrGrAdjustLimitRequest is an example of a single Configuration Change
Request. The FrGrAdjustLimitRequest object contains attributes and operations necessary for
forwarding a limit adjustment to a telemetry process. If the limit change is for the telemetry on the
RTS, any mirrored workstations will receive the FrGrAdjustLimitRequest after the WS RMS
forwards the Request to the RTS RMS. All telemetry Configuration Change Requests will be
handled in the same way. The information that is sent to the processes will be different.
Command, RCM, and the Ground Script Controller will be handled in a similar way. The
information forwarded to the processes will be different and after the WS RMS forwards the
Configuration Change Request to the RTS RMS, it will not be sent back to any mirrored
workstations. This is not necessary since Command, RCM, and Ground Script Controller
processes do not reside on the workstation.

The FrGrPrivilegeRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrPrivilegeRequest is an abstract class that the FrGrCommandPrivilegeRequest and the
FrGrGroundControlPrivilegeRequest objects are derived from. It contains attributes and
operations needed by the FrGrGroundControlPrivilegeRequest and the
FrGrCommandPrivilegeRequest. The FrGrCommandPrivilegeRequest object contains attributes
and operations necessary for changing command authority on a Real-time or Simulation String.
Only a user with command authority is capable of commanding a particular spacecraft. The
FrGrGroundControlPrivilegeRequest object contains attributes and operations necessary for
changing ground control authority on a Real-time, Simulation, or Shared String. Only a user with
ground control authority is capable of making configuration changes to string processes that reside
on the RTS.

The FrGrServiceRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrServiceRequest is an abstract class that the FrGrRealtimeServiceRequest,
FrGrSimulationServiceRequest, and the FrGrReplayServiceRequest objects are derived from. It
contains attributes and a MakeString operation needed by the derived Requests. The
FrGrRealtimeServiceRequest object contains all functionality needed for creation of a Real-Time
String. The FrGrSimulationServiceRequest object contains all functionality needed for creation of
a Simulation String. The FrGrReplayServiceRequest object contains all functionality needed for
creation of a Dedicated Replay or Shared Replay String.

The FrGrStringDeleteRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrStringDeleteRequest object contains all functionality needed for deletion of a string and
its associated processes.

3-25 305-CD-043-001

Figure 3.2.3-10. RMS String Manager Component FrGrAdjustLimitRequest Object Model

FrGrRequest

FrGrGroundControlRequest

FrGrAdjustLimitRequest

mySendFlag

myStringId

myUserId

myWksId

findBackupString(RWSet* PassedStringTable, int passedStringID)

findString(RWSet* PassedStringTable, int PassedStringID)

myOriginator

myCurrentString

execute(FrGrController* Controller)

myType

myParameterId

mySetId

myValue

myTelemetryType

execute(FrGrController* Controller)

configTlm()

sendConfigChange(FoGnRmsWsRmsIF* PassedFoGnRmsWsRmsIF)

 - : int

 - : int

 - : RWCString

 - : RWCString

± : FrGrString*

 ± : FrGrString*

 - : RWCString

 - : FrGrString*

 + : EcTInt

 - : RWCString

 - : int

 - : int

 - : double

 - : RWCString

 + : int

 ± : int

 ± : int

3-26
305-C

D
-043-001

FrGrRequest

FrGrPriviledgeRequest

FrGrCommandPriviledgeRequest FrGrGroundControlPriviledgeRequest

myStringId
myUserId
myWksId

findString(RWSet* PassedStringTable, int PassedStringID)
findBackupString(RWSet* PassedStringTable, int passedStringID)

myOriginator
myCurrentString

execute(FrGrController* Controller)

changeCAid(FrGrStrManResMon* PassedFrGrStrManResMonIF)
checkCAid(FoGnRmsCsmsIF* PassedFoGnRmsCsmsIF)
execute(FrGrController* Controller)

changeGCid(FrGrStrManResMonIF* PassedFrGrStrManResMonIF)
checkGCid(FoGnRmsCsmsIF* PassedFoGnRmsCsmsIF)
execute(FrGrController* Controller)

 - : int
 - : RWCString
 - : RWCString

± : FrGrString*
 ± : FrGrString*

 - : RWCString
 - : FrGrString*

 + : EcTInt

 ± : int
 ± : int
 + : int

 ± : int
 ± : int
 + : int

Figure 3.2.3-11. RMS String Manager Component FrGrPrivilegeRequest Object Model

3-27
305-C

D
-043-001

FrGrRequest

FrGrServiceRequest

FrGrRealtimeServiceRequest FrGrSimulationServiceRequest FrGrReplayServiceRequest

mySCid
myDBid
myRTSid
myUserId
myWksId

makeString()

myOriginator
myCurrentString

execute(FrGrController* Controller)

myDataType

makeString()
createParamServer()
createReplayTlm()
execute(FrGrController* Controller)

myMonitorRts
myMode

execute(FrGrController* Controller)
findString(RWSet* requestStringTable)
makeString()
createTlm(FrGrReqManResMonIF* PassedReqManResMonIF)
createRcm(FrGrReqManResMonIF* PassedReqManResMonIF)
createGSC()
createParamServer()
createCommand(FrGrReqManResMonIF* PassedReqManResMonIF)

myMode

execute(FrGrController* Controller)
findString(RWSet* PassedStringTable)
makeString()
createTlm()
createGSC()
createParamServer()
createCommand()

 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString

± : FrGrString*

 - : RWCString
 - : FrGrString*

 + : EcTInt

 - : RWCString

 ± : FrGrString*
 ± : EcTInt
 ± : int
 + : int

 - : RWCString
 - : RWCString

 + : int
 ± : FrGrString*
 ± : FrGrString*
 ± : int
 ± : int
 ± : EcTInt
 ± : EcTInt
 ± : int

 -

 + : EcTInt
 ± : FrGrString*
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 + : EcTInt
 ± : EcTInt

Figure 3.2.3-12. RMS String Manager Component FrGrServiceRequest Object Model

3-28
305-C

D
-043-001

FrGrRequest

FrGrStringDeleteRequest

myOriginator
myCurrentString

execute(FrGrController* Controller)

myStringId
myAllowance
myUserId
myWksId

execute(FrGrController* Controller)
findString(RWSet* PassedStringTable, int PassedStringID)
deleteCmd(FrGrStrManResMonIF* StrManResMonIF)
deleteGsc(FrGrStrManResMonIF* StrManResMonIF)
deleteParamServer(RWCString Host,FrGrStrManResMonIF* StrManResMonIF)
deleteRcm(FrGrStrManResMonIF* StrManResMonIF)
deleteTlm(RWCString Host, FrGrStrManResMonIF* StrManResMonIF)
removeAll(FrGrStrManResMonIF* PassedStrManResMonIF, RWCString PassedHostId)
removeString(RWSet* PassedStringTable)

 - : RWCString
 - : FrGrString*

 + : EcTInt

 - : EcTInt
 - : RWCString = Cancel
 - : RWCString
 - : RWCString

 + : int

± : FrGrString*
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt

Figure 3.2.3-13. RMS String Manager Component FrGrStringDeleteRequest Object Model

3-29
305-C

D
-043-001

FrGrRequest

myOriginator
myCurrentString

execute(FrGrController* Controller)

FrGrTableUpdateRequest FrGrStringStateUpdateRequest

myTableSubset

execute(FrGrController* Controller)

myNewState
myStringId

findString(RWSet* PassedStringTable, int PassedStringID)
execute(FrGrController* Controller)

 - : RWCString
 - : FrGrString*

 + : EcTInt

 - : RWSet

 + : EcTInt

 - : RWCString
 - : EcTInt

 + : FrGrString*
 + : EcTInt

Figure 3.2.3-14. RMS String Manager Component FrGrTableUpdateRequest Object Model

3-30 305-CD-043-001

The FrGrTableUpdateRequest and FrGrStringStateUpdateRequest objects are derived off of the
FrGrRequest object. FrGrRequest is an abstract class that contains attributes and an Execute
operation that derived classes will inherit. The FrGrTableUpdateRequest object contains all
functionality needed for updating a String Table with a Table Subset. When a RTS RMS String
Table is modified, it is multicasted to every WS RMS via the FrGrTableUpdateRequest. The WS
RMS String Table is an inclusive set of all of the RTS RMS String Tables. The WS RMS will
receive the FrGrTableUpdateRequest and include the myTableSubset into its WS RMS String
Table. When a RTS fails and is incommunicable, its strings are failed over by the user. When the
RTS RMS on the backup RTS receives the String Failover Request, it will check the Request to
determine if the active RTS is communicable. If not, the RTS RMS will multicast to every WS
RMS a FrGrStringStateUpdateRequest. The WS RMS will receive the Request and update its WS
RMS String Table by changing the state of the failed RTS String from Active to Inactive.

3.2.4 RMS String Manager Component Dynamic Model

The following are the RMS String Manager Component scenarios which are defined in this section.

• Initialization of the RMS residing on the Workstation

• Initialization of the RMS residing on the Real-Time Server

• Request for a Real-Time Service Arrives on the Workstation

• Request for a Real-Time Service Arrives on the Real-Time Server

• Request for a Mirrored String Connection Arrives on the Workstation

• Request for a Mirrored String Connection Arrives on the Real-Time Server

• Request for Command Authority Arrives on the Workstation

• Request for Command Authority Arrives on the Real-Time Server

• Request for Telemetry Configuration Change Arrives on the Workstation

• Request for Telemetry Configuration Change Arrives on the Real-Time Server

• Request for Dedicated Replay Telemetry Arrives on the Workstation from DMS

• Request for Dedicated Replay Telemetry Arrives on the Workstation from Analysis

• Request for a String Failover Arrives on the Workstation

• Request for String Deactivation Arrives on the Real-Time Server

• Request for String Activation Arrives on the Real-Time Server

3.2.4.1 Initialization of RMS Residing on the Workstation Scenario

3.2.4.1.1 Initialization of RMS Residing on the Workstation Abstract

The purpose of the Initialization of RMS Residing on the Workstation scenario is to describe the
process by which the RMS is initialized upon system startup of an EOC User Workstation.

3.2.4.1.2 Initialization of RMS Residing on the Workstation Summary Information

Interfaces:

SCDO/CSS Name Server

3-31 305-CD-043-001

Data Management Subsystem

Parameter Server Subsystem

Stimulus:

The RMS software is executed on an EOC Workstation.

Desired Response:

The RMS software will determine that its host is an EOC Workstation and instantiate the
objects that comprise the Workstation RMS object model in order to function in the
necessary role.

Pre-Conditions:

An operational database will need to be established, complete and available for the
Workstation RMS process.

Post-Conditions:

Users will be able to view ground telemetry pages that display RMS provided information
about available logical strings.

Users will be able to issue service requests to establish logical strings for monitoring a Real-
Time contact, simulation of a real-time contact, or replay of historical telemetry.

Users will be able to connect to established real-time strings for monitoring of the real-time
contact in mirrored or tailored telemetry processing mode.

3.2.4.1.3 Scenario Description

The RMS Controller's Initialization operation is invoked. The FdEvEventLogger object is created
to allow RMS to send events to DMS. The CSMS IF object is created and the Controller
determines, via the CSMS nameserver, whether it is on the RTS or on the WS. Upon determining
that its host is a workstation, it creates the FdDsFileAccessor object and retrieves an Operational
DB. The FrGrRmsWsRmsIF object will be created and will allow the WS RMS to receive objects
from the RTS RMS. It will then create the Parameter Server process and register it with the
nameserver. The FoPsClientIF object is created to allow the RMS to communicate with the
Parameter Server. A RWSet object that will contain the IF objects for each RTS RMS will be
created. In this particular scenario there are two RT Servers. Therefore, two
FrGrWsRmsRequestProxy objects are created and added to the RWSet. The String Table is
constructed and a FrGrTableUpdateRequest object is constructed to query each RTS RMS for its
String Table objects. The FrGrTableUpdateRequest object is constructed and sent to the RTS
RMS via the appropriate FrGrWsRmsRequestProxy object. The RTS RMS will send the Request
back to the WS RMS with its String Table included. The String Table objects are retrieved from
the Request and added to the WS RMS String Table. The String Table Update Request Status is
received from the RTS RMS and the process is repeated in order to retrieve the second RTS RMS's
String Table. Once the workstation string table is constructed, the Parameter Server is updated
with the new string table parameters. The FrGrRequestHandler object is constructed in order to
receive Requests from FUI, Analysis, and DMS.

3-32 305-CD-043-001

3.2.4.1.4 State Transition Description

3.2.4.2 Initialization of RMS Residing on the Real-Time Server Scenario

3.2.4.2.1 Initialization of RMS Residing on the Real-Time Server Abstract

The purpose of the Initialization of RMS Residing on the Real-Time Server scenario is to describe
the process by which the RMS is initialized upon system startup of a Real-Time Server.

3.2.4.2.2 Initialization of RMS Residing on the Real-Time Server Summary
Information

Interfaces:

CSMS Name Server

Data Management Subsystem

Parameter Server Subsystem

Telemetry Subsystem

Command Subsystem

Real-Time Contact Management Subsystem

FUI Ground Script Controller

Stimulus:

The RMS software is executed on a Real-Time Server.

Desired Response:

The RMS software will determine that its host is a Real-Time Server and instantiate the objects
that make up the RTS RMS object model in order to function in the necessary role.

Pre-Conditions:

An operational database will need to be established, complete and available for the RTS RMS
process.

Post-Conditions:

Users will be able to issue service requests to establish logical strings for monitoring a real-
time contact, simulation of a real-time contact, or replay of historical telemetry.

Users will be able to connect to established real-time strings for monitoring of the real-time
contact in mirrored or tailored telemetry processing mode.

3.2.4.2.3 Scenario Description

The RMS Controller's Initialization operation is invoked. The FdEvEventLogger object is created
in order for RMS to send events to DMS. The CSMS IF object is created and the Controller
determines whether it is on the RTS or on the WS. Upon determining that its host is a RTS, it
creates the FdDsFileAccessor object and retrieves an Operational DB. The FrGrRmsWsRmsIF

3-33
305-C

D
-043-001

FrGrController FdDsFileAccessor FrGrWsRmsRequestProxy RWSetFrGrWsRmsRequestProxy FrGrRequestHandler RWSet FoGnCsmsIFFdEvEventLogger FoPsClientIF FrGrRmsWsRmsIFFrGrTableUpdateRequest

createFdDsFileAccessor

createFrGrWsRmsRequestProxy

createStringTable

createFrGrWsRmsRequestProxy

getStringObjects
addStringsToTable

getStringObjects
addStringsToTable

createFrGrRequestHandler

getOperationalDB

returnOperationalDB

createFrGrWsRmsRequestProxySet

addProxyToSet

addProxyToSet

createFoGnCsmsIF

createFdEvEventLogger

queryNameServerForRole

updateParameterserver

makeFrGrRmsWsRmsIFObject

createParameterServerProcess

register with name server

GetRTS's

createFoPsClientIF

createRequest
sendTableUpdateRequest

receiveTableUpdateRequest

receiveTableUpdateRequestStatus

sendTableUpdateRequest
receiveTableUpdateRequest

receiveTableUpdateRequestStatus

Figure 3.2.4.1.4-1. Initialization of RMS Residing on the Workstation Event Trace

3-34 305-CD-043-001

object is created in order to receive Requests from the RMS processes that reside on the
workstation. A RWSet collection class is created that will contain the Default Configuration
Request objects. A default configuration file is requested from the DMS and loaded into the newly
created default configuration collection class. A String Table is created as well as the
FrGrStrManResMonProxy object. This object allows the RMS String Manager process to
communicate with the RMS Resource Monitor process. An iterator is created that will allow the
RMS to iterate over the Default Configuration Request objects. In this particular scenario the only
Default Configuration Request is a single FrGrRealtimeServiceRequest. This request is executed.
In doing so, a string object is made and added to the String Table. A FrGrTableUpdateRequest
object is created and multicasted to each WS RMS in order for their String Table to be updated
with the new String.

A FrGrParameterServer object is created in order for a Parameter Server process to be initialized.
In Figure 3.2.4.2.4-3, the FrGrParameterServer object can be found. The Parameter Server process
is created via the FrGrParameterServer object. In Figure 3.2.4.2.4-1 the ParameterServer object is
added to the String and a Request is sent to the Resource Monitor to monitor the Parameter Server
process.

A FrGrTelemetry object is created that is representative of the telemetry processes responsible for
decommutation of the housekeeping, health&safety, standby, and diagnostic telemetry data. In
Figure 3.2.4.2.4-3, four corresponding telemetry process objects are created. These telemetry
process objects are representative of the processes used to decommutate housekeeping,
health&safety, standby and diagnostic telemetry. The FrGrDataArchiver objects are created when
the FrGrTelemetryProcess objects are created. An additional telemetry process object is created
that is representative of the state check Telemetry Process. A FrGrDataArchiver object will not be
created when this telemetry process object is created. The Request object notifies the
FrGrTelemetry object to configure. FrGrTelemetry will notify its corresponding
FrGrTelemetryProcess objects to start. If the FrGrTelemetryProcess represents a decommutation
or dump process, the FrGrDataArchiver object is notified to start first. The data archiver process
is created and the FrGrTelemetryProcess object creates the decommutation or dump process.
Diagnostic telemetry will be decommutated via a dump telemetry process. Housekeeping,
Health&Safety, and Standby telemetry will be decommutated via a decommutation telemetry
process. If the FrGrTelemetryProcess represents the state check process, the data archiver process
is not created and only the state check process is created. After the data archiver, decommutation,
dump, and state check processes are created, the FrGrTelemetry object notifies each
FrGrTelemetryProcess object to Config. If the FrGrTelemetryProcess object is associated with a
FrGrDataArchiver object, the FrGrDataArchiver object will be notified by the
FrGrTelemetryProcess object to Config. Once the data archiver process is configured, the
decommutation and dump processes will be configured. In the case of configuring a state check
process, only the state check process is configured. There is no data archiver process associated
with the state check telemetry process. After all decommutation, diagnostic, state check, and data
archiver processes are configured, the FrGrRealtimeServiceRequest is notified that telemetry has
been configured. In Figure 3.2.4.2.4-1, the FrGrTelemetry object is added to the string. The RMS
Resource Monitor process is notified of the new Process IDs that it needs to monitor.

In Figure 3.2.4.2.4-2, a FrGrCommand object is created that is representative of the command
processes responsible for commanding the spacecraft. In Figure 3.2.4.2.4-4, three

3-35 305-CD-043-001

FrGrCommandProcess objects are created. These objects will be used to communicate with the
Transmit, Fop, and Format proxies. The Request object notifies FrGrCommand to configure.
FrGrCommand notifies each FrGrCommandProcess object to start. A Transmit Command process
is created and told the RMS address on the command line. The process will notify RMS that it is
alive. This is repeated for the Format and Fop Command processes. After all command processes
are started, the command object notifies the three FrGrCommandProcess objects to config. The
command processes are sent their configuration information. In Figure 3.2.4.2.4-2, the Request
object adds the FrGrCommand object to the string. The RMS Resource Monitor is notified of the
command Process IDs that it needs to monitor.

A FrGrRTContact object is created that is representative of the RCM processes responsible for
processing Nascom and EDOS data. In Figure 3.2.4.2.4-5, the FrGrRcmProcess objects are
created. The FrGrDataArchiver object is created when a FrGrRcmProcess object is created. These
objects will be used to communicate with the NoutMgr, EoutMgr, and DataArchiver proxies. The
Request object notifies FrGrRTContact to configure. FrGrRTContact notifies the first
FrGrRcmProcess to start. This FrGrRcmProcess object is representative of the NoutMgr RCM
process. The DataArchiver process is created and followed by creation of the NoutMgr process.
The FrGrRTContact object will then notify the FrGrRcmProcess object to configure. The
FrGrRcmProcess object will notify the FrGrDataArchiver object to configure. After the
DataArchiver process is configured, the NoutMgr process is configured. This is repeated for the
EoutMgr process. Once all DataArchiver and RCM processes are configured, the Request object
is notified. In Figure 3.2.4.2.4-2, the RTContact object is added to the string. The newly created
Process ID's are sent to the RMS Resource Monitor process in order for them to be monitored by
CSMS. The EinMgr and NinMgr process IDs are sent to Resource Monitor, but they are started
by their corresponding EoutMgr and NoutMgr processes.

The Request object will create the FrGrGroundScriptController object. In Figure 3.2.4.2.4-5, the
FrGrGroundScriptProcess object is notified to create a Ground Script Controller process. Once the
process is created, it is notified to configure. In Figure 3.2.4.2.4-2, the FrGrGroundScriptProcess
is added to the string and the Ground Script Controller process PID is sent to the Resource Monitor
process in order for it to be monitored.

The FrGrRealtimeServiceRequest has completed processing and the FrGrController deletes the
Request. The Default Configuration Information is checked for additional Requests. No Requests
are found and the RTS RMS has been initialized.

3-36
305-C

D
-043-001

3.2.4.2.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController FdDsFileAccessor FrGrRmsWsRmsIF RWSet RWSet FrGrStrManResMonProxy FrGrRealtimeServiceRequest FrGrRealtimeString

See Appropriate
Subsystem

Configuration
PageFdEvEventLogger FoGnCsmsIF FrGrRtsRmsRequestProxy FrGrTableUpdateRequest

createFdDsFileAccessor

createFrGrRmsWsRmsIF

createDefConInfo

requestDefaultConfigFile

loadDefConInfo

createStringTable

createFrGrStrManResMonProxy

notifyRequestToExecute

makeString

addStringToTable

multicastTableUpdateRequest

CreateFrGrTelemetry
ForAllTelemetryTypes

getOperationalDb

returnOperationalDb

TelemetryConfigured

create
Iterator

sendPidMonitorRequest
ForHkDecom

addTlmToString

Config

createFdEvEventLogger

sendPidMonitorRequest
ForH&SDecom

sendPidMonitorRequest
ForStandbyDecom

sendPidMonitorRequest
ForDump

sendPidMonitorRequest
ForHkDecomArchiver

sendPidMonitorRequest
ForH&SDecomArchiver

sendPidMonitorRequest
ForStandbyDecomArchiver

queryNameServerForRole

createFoGnCsmsIF

makeRtsRmsRequestProxy

createParamServer

startParamServer

addPsToString

sendPidMonitorRequest
ForDumpArchiver

sendPidMonitorRequest
ForStateCheck

createRequest

sendPidMonitorRequest
ForPs

Figure 3.2.4.2.4-1. Initialization of RMS Residing on the Real-Time Server Event Trace (Part 1 of 2)

3-37
305-C

D
-043-001

FrGrController FdDsFileAccessor FrGrRmsWsRmsIF RWSet RWSet FrGrStrManResMonProxy FrGrRealtimeServiceRequest FrGrRealtimeString

See Appropriate
Subsystem

Configuration
PageFdEvEventLogger FoGnCsmsIF

FrGrRtsRmsRequestProxy FrGrTableUpdateRequest

noMore
Requests

initialization
Complete

requestDoneExecuting

createCommand

createRTContact

CommandConfigured

RTContactConfigured

addCmdToString

sendPidMonitorRequest
ForTransmit

addRTContactToString

sendPidMonitorRequest
forNoutMgr

CreateGroundScriptProcessObject

GroundScriptProcessConfigured

sendPidMonitorRequest
ForGroundScriptProcess

ConfigCommand

ConfigRTContact

ConfigGroundScriptProcess

deleteRequest

sendPidMonitorRequest
ForFormat

sendPidMonitorRequest
ForFOP

sendPidMonitorRequest
ForEoutMgr

CreateGroundScriptProcess

GroundScriptProcessCreated

addGscToString

sendPidMonitorRequest
forNinMgr

sendPidMonitorRequest
ForEinMgr

sendPidMonitorRequest
forNinMgrArchiver

sendPidMonitorRequest
ForEinMgrArchiver

Figure 3.2.4.2.4-2. Initialization of RMS Residing on the Real-Time Server Event Trace
(Part 2 of 2)

3-38
305-C

D
-043-001

FrGrRealtimeServiceRequest FrGrTelemetry FrGrTelemetryProcess FtTlTelemetryConfig

repeat previous
two events for

H&S, Diagnostic and
Standby Telemetry

FrGrTelemetryProcess
Objects will be

created for
Health&Safety, Diagnostic
and Standby Processes

FdCfRmsConfigProxyFrGrDataArchiver FrGrTelemetyProcess

repeat previous two events
for H&S, Diagnostic and

Standby Telemetry

FrGrParameterServer

StartHk
Telemetry

Config

Config

CreateDecom
ProcessObject

DecomConfigured

TelemetryConfigured

CreateFrGrTelemetry
ForAllTelemetryTypes

HkTelemetry
ProcessCreated

SendConfigInfo

ConfigInfoReceived

CreateDataArchiverObject

StartDataArchiver

DataArchiverProcessCreated

Config

SendConfigInfo

ConfigInfoReceived

ConfigInfoReceived

createParamServer

startParamServer

createStateCheckProcessObject

StartStateCheckTelemetry

StateCheckTelemetry

Figure 3.2.4.2.4-3. Initialization of RTS RMS - Parameter Server and Telemetry Subsystem Event Trace

3-39
305-C

D
-043-001

FrGrRealtimeServiceRequest FrGrCommand FrGrCommandProcess FoGnRmsTransmitProxy

repeat previous event
for Format and FOP processes

repeat previous two events
for the Format and FOP

processes

repeat previous two events
for the Format and FOP

processes

Config

StartTransmit

Config

CreateCommand

CreateTransmitProcessObject

TransmitConfigured

CommandConfigured

TransmitProcessCreated

SendConfigInfo

ConfigInfoReceived

Figure 3.2.4.2.4-4. Initialization of RTS RMS - Command Subsystem Event Trace

3-40
305-C

D
-043-001

FrGrRealtimeServiceRequest FrGrRTContact FrGrRcmProcess FrGrGroundScriptControllerFoGnRmsRcmProxy FuCcGscProxy

FrGrRcmProcess object
will be created for EoutMgr

Process

repeat previous two
events for EoutMgr Process

FrGrDataArchiver FdCfRmsConfigProxy

repeat previous two
events for EoutMgr Process

ConfigRTContact

StartNoutMgr

Config

CreateGroundScriptProcess

CreateRTContact
CreateFrGrNoutMgr

CreateGroundScriptProcessObject

SendConfigInfo

NoutMgrConfigured

ConfigInfoReceived

RTContactConfigured

GroundScriptProcessConfigured

NoutMgr Process Created

SendConfigInfo
ConfigInfoReceived

GroundScriptProcessCreated

ConfigGroundScriptProcess

CreateFrGrDataArchiver

StartDataArchiver

DataArchiverProcessCreated

Config
SendConfigInfo
ConfigInfoReceived

ConfigInfoReceived

Figure 3.2.4.2.4-5. Initialization of RTS RMS - Real-Time Contact Management Subsystem and
Ground Script Controller Event Trace

3-41 305-CD-043-001

3.2.4.3 Request for A Real-Time Service Arrives on the Workstation Scenario

3.2.4.3.1 Request for a Real-Time Service Arrives on the Workstation Abstract

The purpose of the Request for a Real-Time Service Arrives on the Workstation scenario is to
describe the process by which the Workstation RMS acts upon a request for a real-time service.

3.2.4.3.2 Request for a Real-Time Service Arrives on the Workstation Summary
Information

Interfaces:

FOS User Interface Subsystem

SCDO

Stimulus:

The user wishing to create a Realtime String on the RTS, sends a RealtimeServiceRequest via
the FUI.

Desired Response:

The WS RMS software will forward the Request to the RTS RMS to create a real-time string
that includes all appropriate software associated with a real-time string.

Pre-Conditions:

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

Post-Conditions:

Users will be able to connect to the string for monitoring of the real-time contact in mirrored
or tailored telemetry processing mode.

Users will be able to request Ground Control Authority in order to change the configuration of
the string software processes located on the RTS and send Ground Control Message
Requests (GCMRs) via the RCM software.

Users will be able to request Command Authority in order to send commands to the spacecraft
via the string Ground Script Controller and Command processes.

EDOS CODA reports will be archived by DMS.

NASCOM blocks and EDOS Data Units (EDUs) will be archived by DMS.

3.2.4.3.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrRealtimeServiceRequest
is returned. The Controller invokes the FrGrRealtimeServiceRequest object's Execute operation.
It is then ensured that the request came from a valid Ground Controller and Ground Controller
workstation. Upon determining that the string does not already exist and a DbId was supplied with
the Request, the FrGrRealtimeServiceRequest is passed to the RTS RMS. When the request has
been processed on the RTS a status is sent back to the FUI and the request is deleted.

3-42
305-C

D
-043-001

3.2.4.3.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController FrGrRequestHandler RWSet FrGrRealtimeServiceRequest FrGrWsRmsRequestProxyFoGnRmsCsmsIFRWSet

notifyRequestToExecute

findString

requestDoneExecuting

returnRequest

deleteRequest

passThisRequestToRtsRms

RtsRmsDoneExecutingRequest

notifyFuiOfRequest
Completion

stringNotFound

userIdIsValidGC
WksIdIsValidGCws

checkUserId
checkWksId

DbId
present

CheckQueue GetRequest
FromQueue

Figure 3.2.4.3.4-1. Request for a Real-Time Service Arrives on the Workstation Event Trace

3-43 305-CD-043-001

3.2.4.4 Request for Real-Time Service Arrives on the Real-Time Server Scenario

3.2.4.4.1 Request for a Real-Time Service Arrives on the Real-Time Server Abstract

The purpose of the Request for Real-Time Service Arrives on the Real-Time Server scenario is to
describe how the RTS RMS acts upon a user request for a real-time service that is forwarded from
a Workstation RMS.

3.2.4.4.2 Request for a Real-Time Service Arrives on the Real-Time Server
Summary Information

Interfaces:

Data Management Subsystem

Parameter Server Subsystem

Telemetry Subsystem

Command Subsystem

Real-Time Contact Management Subsystem

FUI Ground Script Controller

Stimulus:

The RMS on the workstation forwards a FrGrRealtimeServiceRequest object to the RMS on
the RTS for processing.

Desired Response:

The RTS RMS software will create a real-time string that includes all appropriate software
associated with a real-time string.

Pre-Conditions:

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

Post-Conditions:

Telemetry processes will be configured for decommutation of housekeeping, health&safety,
standby, and dump telemetry data. The state check telemetry process will be started.

The Format, FOP, and Transmit Command processes will be configured.

The Ground Script Controller Process will be configured.

The RCM processes will be configured.

The Data Archiver processes will be configured.

The Parameter Server process will be created.

3.2.4.4.3 Scenario Description

The Controller checks the queue of the FrGrFrGrRmsWsRmsIF object and a
FrGrRealtimeServiceRequest is returned. The Controller invokes the
FrGrRealtimeServiceRequest object's Execute operation. A FrGrRealtimeString is created and

3-44 305-CD-043-001

added to the String Table. A FrGrTableUpdateRequest object is created and multicasted to each
WS RMS in order for their String Table to be updated with the new String.

A FrGrParameterServer object is created in order for a Parameter Server process to be initialized.
In Figure 3.2.4.4.4-3, the FrGrParameterServer object can be found. The Parameter Server process
is created via the FrGrParameterServer object. In Figure 3.2.4.4.4-1 the ParameterServer object is
added to the String and a Request is sent to the Resource Monitor to monitor the Parameter Server
process.

A FrGrTelemetry object is created that is representative of the telemetry processes responsible for
decommutation of the housekeeping, health&safety, standby, and diagnostic telemetry data. In
Figure 3.2.4.4.4-3, four corresponding telemetry process objects are created. These telemetry
process objects are representative of the processes used to decommutate housekeeping,
health&safety, standby and diagnostic telemetry. The FrGrDataArchiver objects are created when
the FrGrTelemetryProcess objects are created. An additional telemetry process object is created
that is representative of the state check Telemetry Process. A FrGrDataArchiver object will not be
created when this telemetry process object is created. The Request object notifies the
FrGrTelemetry object to configure. FrGrTelemetry will notify its corresponding
FrGrTelemetryProcess objects to start. If the FrGrTelemetryProcess represents a decommutation
or dump process, the FrGrDataArchiver object is notified to start first. The data archiver process
is created and the FrGrTelemetryProcess object creates the decommutation or dump process.
Diagnostic telemetry will be decommutated via a dump telemetry process. Housekeeping,
Health&Safety, and Standby telemetry will be decommutated via a decommutation telemetry
process. If the FrGrTelemetryProcess represents the state check process, the data archiver process
is not created and only the state check process is created. After the data archiver, decommutation,
dump, and state check processes are created, the FrGrTelemetry object notifies each
FrGrTelemetryProcess object to Config. If the FrGrTelemetryProcess object is associated with a
FrGrDataArchiver object, the FrGrDataArchiver object will be notified by the
FrGrTelemetryProcess object to Config. Once the data archiver process is configured, the
decommutation and dump processes will be configured. In the case of configuring a state check
process, only the state check process is configured. There is no data archiver process associated
with the state check telemetry process. After all decommutation, diagnostic, state check, and data
archiver processes are configured, the FrGrRealtimeServiceRequest is notified that telemetry has
been configured. In Figure 3.2.4.4.4-1, the FrGrTelemetry object is added to the string. The RMS
Resource Monitor process is notified of the new Process IDs that it needs to monitor.

In Figure 3.2.4.4.4-2, a FrGrCommand object is created that is representative of the command
processes responsible for commanding the spacecraft. In Figure 3.2.4.4.4-4, three
FrGrCommandProcess objects are created. These objects will be used to communicate with the
Transmit, Fop, and Format proxies. The Request object notifies FrGrCommand to configure.
FrGrCommand notifies each FrGrCommandProcess object to start. A Transmit Command process
is created and told the RMS address on the command line. The process will notify RMS that it is
alive. This is repeated for the Format and Fop Command processes. After all command processes
are started, the command object notifies the three FrGrCommandProcess objects to config. The
command processes are sent their configuration information. In Figure 3.2.4.4.4-2, the Request
object adds the FrGrCommand object to the string. The RMS Resource Monitor is notified of the
command Process IDs that it needs to monitor.

3-45 305-CD-043-001

A FrGrRTContact object is created that is representative of the RCM processes responsible for
processing Nascom and EDOS data. In Figure 3.2.4.4.4-5, the FrGrRcmProcess objects are
created. The FrGrDataArchiver object is created when a FrGrRcmProcess object is created. These
objects will be used to communicate with the NoutMgr, EoutMgr, and DataArchiver proxies. The
Request object notifies FrGrRTContact to configure. FrGrRTContact notifies the first
FrGrRcmProcess to start. This FrGrRcmProcess object is representative of the NoutMgr RCM
process. The DataArchiver process is created and followed by creation of the NoutMgr process.
The FrGrRTContact object will then notify the FrGrRcmProcess object to configure. The
FrGrRcmProcess object will notify the FrGrDataArchiver object to configure. After the
DataArchiver process is configured, the NoutMgr process is configured. This is repeated for the
EoutMgr process. Once all DataArchiver and RCM processes are configured, the Request object
is notified. In Figure 3.2.4.4.4-2, the RTContact object is added to the string. The newly created
Process ID's are sent to the RMS Resource Monitor process in order for them to be monitored by
CSMS. The EinMgr and NinMgr process IDs are sent to Resource Monitor, but they are started
by their corresponding EoutMgr and NoutMgr processes.

The Request object will create the FrGrGroundScriptController object. In Figure 3.2.4.4.4-5, the
FrGrGroundScriptProcess object is notified to create a Ground Script Controller process. Once the
process is created, it is notified to configure. In Figure 3.2.4.4.4-2, the FrGrGroundScriptProcess
is added to the string and the Ground Script Controller process PID is sent to the Resource Monitor
process in order for it to be monitored.

Once the FrGrRealtimeServiceRequest has completed processing, the FrGrController notifies the
WS RMS of the Request Status and the Request is deleted.

3-46
305-C

D
-043-001

3.2.4.4.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController FrGrRmsWsRmsIF RWSet FrGrStrManResMonProxy FrGrRealtimeServiceRequest FrGrRealtimeString

See Appropriate
Subsystem

Configuration
Page

FrGrRtsRmsRequestProxy FrGrTableUpdateRequestRWSet

notifyRequestToExecute
makeString

addStringToTable

multicastTableUpdateRequest

CreateFrGrTelemetry
ForAllTelemetryTypes

TelemetryConfigured

sendPidMonitorRequest
ForHkDecom

addTlmToString

Config

sendPidMonitorRequest
ForH&SDecom

sendPidMonitorRequest
ForStandbyDecom

sendPidMonitorRequest
ForDump

sendPidMonitorRequest
ForHkDecomArchiver

sendPidMonitorRequest
ForH&SDecomArchiver

sendPidMonitorRequest
ForStandbyDecomArchiver

createParamServer

startParamServer

addPsToString

sendPidMonitorRequest
ForDumpArchiver

sendPidMonitorRequest
ForStateCheck

createRequest

checkQueue
GetRequest
FromQueue

returnRequest

sendPidMonitorRequest
ForPs

Figure 3.2.4.4.4-1. Request for a Real-Time Service Arrives on the Real-Time Server Event Trace
(Part 1 of 2)

3-47
305-C

D
-043-001

FrGrController FrGrRmsWsRmsIF RWSet FrGrStrManResMonProxy FrGrRealtimeServiceRequest FrGrRealtimeString

See Appropriate
Subsystem

Configuration
PageFrGrRtsRmsRequestProxy FrGrTableUpdateRequestRWSet

requestDoneExecuting

createCommand

createRTContact

CommandConfigured

RTContactConfigured

addCmdToString

sendPidMonitorRequest
ForTransmit

addRTContactToString

sendPidMonitorRequest
forNoutMgr

CreateGroundScriptProcessObject

GroundScriptProcessConfigured

sendPidMonitorRequest
ForGroundScriptProcess

ConfigCommand

ConfigRTContact

ConfigGroundScriptProcess

deleteRequest

sendPidMonitorRequest
ForFormat

sendPidMonitorRequest
ForFOP

sendPidMonitorRequest
ForEoutMgr

CreateGroundScriptProcess

GroundScriptProcessCreated

addGscToString

sendPidMonitorRequest
forNinMgr

sendPidMonitorRequest
ForEinMgr

sendPidMonitorRequest
forNinMgrArchiver

sendPidMonitorRequest
ForEinMgrArchiver

notifyWsRmsOfRequestStatus

Figure 3.2.4.4.4-2. Request for a Real-Time Service Arrives on the Real-Time Server Event Trace
(Part 2 of 2)

3-48
305-C

D
-043-001

FrGrRealtimeServiceRequest FrGrTelemetry FrGrTelemetryProcess FtTlTelemetryConfig

repeat previous
two events for

H&S, Diagnostic and
Standby Telemetry

FrGrTelemetryProcess
Objects will be

created for
Health&Safety, Diagnostic
and Standby Processes

FdCfRmsConfigProxyFrGrDataArchiver FrGrTelemetyProcess

repeat previous two events
for H&S, Diagnostic and

Standby Telemetry

FrGrParameterServer

StartHk
Telemetry

Config

Config

CreateDecom
ProcessObject

DecomConfigured

TelemetryConfigured

CreateFrGrTelemetry
ForAllTelemetryTypes

HkTelemetry
ProcessCreated

SendConfigInfo

ConfigInfoReceived

CreateDataArchiverObject

StartDataArchiver

DataArchiverProcessCreated

Config

SendConfigInfo

ConfigInfoReceived

ConfigInfoReceived

createParamServer

startParamServer

createStateCheckProcessObject

StartStateCheckTelemetry

StateCheckTelemetry

Figure 3.2.4.4.4-3. Request for a Real-Time Service - Parameter Server and Telemetry
Subsystem Event Trace

3-49
305-C

D
-043-001

FrGrRealtimeServiceRequest FrGrCommand FrGrCommandProcess FoGnRmsCmdIF

repeat previous event
for Format and FOP processes

repeat previous two events
for the Format and FOP

processes

repeat previous two events
for the Format and FOP

processes

Config

StartTransmit

Config

CreateCommand

CreateTransmitProcessObject

TransmitConfigured

CommandConfigured

TransmitProcessCreated

SendConfigInfo

ConfigInfoReceived

Figure 3.2.4.4.4-4. Request for a Real-Time Service - Command Subsystem Event Trace

3-50
305-C

D
-043-001

FrGrRealtimeServiceRequest FrGrRTContact FrGrRcmProcess FrGrGroundScriptControllerFoGnRmsRcmProxy FuCcGscProxy

FrGrRcmProcess object
will be created for EoutMgr

Process

repeat previous two
events for EoutMgr Process

FrGrDataArchiver FdCfRmsConfigProxy

repeat previous two
events for EoutMgr Process

ConfigRTContact

StartNoutMgr

Config

CreateGroundScriptProcess

CreateRTContact
CreateFrGrNoutMgr

CreateGroundScriptProcessObject

SendConfigInfo

NoutMgrConfigured

ConfigInfoReceived

RTContactConfigured

GroundScriptProcessConfigured

NoutMgr Process Created

SendConfigInfo
ConfigInfoReceived

GroundScriptProcessCreated

ConfigGroundScriptProcess

CreateFrGrDataArchiver

StartDataArchiver

DataArchiverProcessCreated

Config
SendConfigInfo
ConfigInfoReceived

ConfigInfoReceived

Figure 3.2.4.4.4-5. Request for a Real-Time Service - Real-Time Contact Management
Subsystem and Ground Script Controller Event Trace

3-51 305-CD-043-001

3.2.4.5 Request for a Mirrored String Connection Arrives on the Workstation
Scenario

3.2.4.5.1 Request for a Mirrored String Connection Arrives on the Workstation
Abstract

The purpose of the Request for a Mirrored String Connection Arrives on the Workstation scenario
is to describe how the Workstation RMS acts upon a user request for a mirrored connection to an
existing logical string.

3.2.4.5.2 Request for a Mirrored String Connection Arrives on the Workstation
Summary Information

Interfaces:

FOS User Interface Subsystem

Parameter Server Subsystem

Telemetry Subsystem

Stimulus:

The user, wishing to connect to a logical string and mirror that string's telemetry process
configuration on the RTS, sends a String Connect Request to the workstation RMS via the
FUI.

Desired Response:

The RMS software will create a telemetry process on the WS with a configuration that mirrors
the corresponding telemetry process on the RTS.

Pre-Conditions:

A string has been created for the user to connect to.

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

Post-Conditions:

The user will be able to monitor telemetry data using the same configuration as the RTS
Telemetry Subsystem processes.

3.2.4.5.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrStringConnectRequest is
returned. The Controller invokes the FrGrStringConnectRequest object's Execute operation. A
string search is peformed and the string is found. It is determined that the user is not already
connected. In Figure 3.2.4.5.4-2, the ParameterServer object is created. In Figure 3.2.4.5.4-1, the
ParameterServer object is added to the string. In Figure 3.2.4.5.4-2, the Parameter Server process
is started. This is followed by the creation of a FrGrTelemetry object and a FrGrTelemetryProcess
object. In Figure 3.2.4.5.4-1, the newly created FrGrTelemetry object is added to the string. The
FrGrStringConnectRequest is sent to the RTS RMS and the arrival of a Telemetry Configuration
Snapshot is awaited. Once the FrGrSnapshotCompNotif object is received, via the

3-52 305-CD-043-001

FrGrRmsWsRmsIF object, it is notified to execute. A string search is performed and the
FrGrTelemetry object is retrieved from the string. The Notif object notifies the FrGrTelemetry
object to configure. In Figure 3.2.4.5.4-2, the FrGrTelemetry object will notify its corresponding
FrGrTelemetryProcess object to start. The FrGrTelemetryProcess object will create its process and
tell it the RMS address on the command line. The process will notify RMS that it is alive. Once
the process is created, the FrGrTelemetry object is notified. The FrGrTelemetry object will notify
the FrGrTelemetryProcess object to configure with the Snapshot File. The FrGrTelemetryProcess
object will send the snapshot file along with the other configuration information to the telemetry
process. Once the telemetry process is configured, the FrGrSnapshotCompNotif object is notified.
In Figure 3.2.4.5.4-1, the FrGrStringConnectRequest is notified that the FrGrSnapshotCompNotif
object has completed execution and the FrGrStringConnectRequest deletes the
FrGrSnapshotCompNotif object. The completion status of the original FrGrStringConnectRequest
that was sent to the RTS RMS is received and the Controller is notified. FUI is notified of the
String Connect Request completion and the FrGrStringConnectRequest object is deleted.

3.2.4.5.4 State Transition Description

3.2.4.6 Request for a Mirrored String Connection Arrives on the Real-Time Server
Scenario

3.2.4.6.1 Request for a Mirrored String Connection Arrives on the Real-Time Server
Abstract

The purpose of the Request for a Mirrored String Connection Arrives on the Real-Time Server
scenario is to describe how the RTS RMS acts upon a request for a mirrored string connection that
is forwarded from a workstation RMS.

3.2.4.6.2 Request for a Mirrored String Connection Arrives on the Real-Time Server
Summary Information

Interfaces:

Telemetry Subsystem

Stimulus:

The RMS on the workstation forwards a FrGrStringConnectRequest object to the RTS RMS
for processing.

Desired Response:

The RMS software will include the user as part of a string and request a configuration snapshot
from a specific telemetry process. A Snapshot Completion Notification will be sent back
to the WS RMS in order for the telemetry process on the WS to be configured in the same
way as the telemetry on the RTS.

Pre-Conditions:

A string has been created for the user to connect to.

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

3-53
305-C

D
-043-001

FrGrController FrGrRequestHandler RWSet FrGrStringConnectRequest FrGrRealtimeString FrGrWsRmsRequestProxy see Fig 3.2.4.5.4-2 FrGrSnapshotCompNotifRWSet FrGrRmsWsRmsIF RWSet

notifyRequestToExecute

findString

requestDoneExecuting

receiveRequest

deleteRequest

checkForSnapshotCompletion

returnSnapshotCompletion

notifyFuiOfRequest
Completion

StringFound

CreateMirroredTelemetry

AddObjectToString

sendRequestToRtsRms

notifyRequestToExecute

findString

stringFound

getTlm

configTlmWithFiles

requestDoneExecuting

deleteRequest

receiveStringConnectCompNotif

configComplete

checkQueue

Get Request
From Queue

User Not
Already

Connected

createParameterServerObject

addParamServer
To String

startParamServer

getSnapShotComp
From Queue

Figure 3.2.4.5.4-1. Execution of String Connection Request on the Workstation Event Trace

3-54
305-C

D
-043-001

FrGrStringConnectRequest FrGrTelemetry FrGrTelemetryProcess FtTlTelemetryConfigFrGrSnapshotCompNotif

see Fig 3.2.4.5.4-1

FrGrParameterServer

configTlmWithFiles

ConfigWithFile

CreateMirroredTelemetry
CreateFrGrTelemetryProcess

DecomConfigured

DecomConfigured

configComplete

SnapStartTlmProcess

SendConfigInfo

TlmProcessCreated

createParameterServerObject

startParamServer

Figure 3.2.4.5.4-2. Creation of Mirrored Telemetry Subsystem on the Workstation Event Trace

3-55 305-CD-043-001

Post-Conditions:

The configuration snapshot has been taken and the RTS RMS is capable of processing other
requests from the WS RMS's.

3.2.4.6.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmsIF and a FrGrStringConnectRequest is
returned. The Controller invokes the FrGrStringConnectRequest object's Execute operation.

A string search is performed and the string is found. The user and workstation is added to the string
and a FrGrTableUpdateRequest object is created. This object is multicasted to each WS RMS in
order to update the WS RMS String Table. The appropriate FrGrTelemetry object is retrieved from
the string and the FrGrTelemetry object is notified to Snap. In Figure 3.2.4.6.4-2, the
corresponding FrGrTelemetryProcess object is then notified to send a Configuration Snapshot
Request to Telemetry. The file is created by the Telemetry subsystem and is stored on the WS
RMS under a predetermined path name. Once the Telemetry subsystem notifies the
FrGrTelemetryProcess object that the snapshot has been taken, the FrGrTelemetry object is
notified, followed by notification of the FrGrStringConnectRequest. In Figure 3.2.4.6.4-1, the
FrGrSnapshotCompNotif object is created and sent to the WS RMS. The
FrGrStringConnectRequest deletes the FrGrSnapshotCompNotif object and notifies the Controller
that it has finished execution. After the Controller notifies the WS RMS that the
StringConnectRequest has been processed, it deletes the FrGrStringConnectRequest.

3-56
305-C

D
-043-001

3.2.4.6.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController RWSet FrGrStringConnectRequest FrGrRealtimeString FrGrRmsWsRmsIF see next page FrGrSnapshotCompNotifRWSet FrGrRtsRmsRequestProxyFrGrTableUpdateRequest

notifyRequestToExecute

findString

requestDoneExecuting

returnRequest

deleteRequest

createSnapshotCompNotifObject

StringFound

GetTlmObject

GetConfigSnapshot

AddUser

AddMirroredWs

MulticastTableUpdateRequest

notifyWsRmsOfRequestCompletion

sendNotifToWs

sendThisObjectToWs

configSnapped

deleteRequest

checkQueue

Get Request
From Queue

CreateTableUpdate
Request

Figure 3.2.4.6.4-1. Execution of String Connection Request on the Real-Time Server Event Trace

3-57
305-C

D
-043-001

FrGrStringConnectRequest FrGrTelemetry FrGrTelemetryProcess FtTlTelemetryConfig

SendSnapRequest

GetConfigSnapshot
SnapDecom

ReceiveSnapCompletion

ConfigSnapped

DecomSnapped

Figure 3.2.4.6.4-2. Creation of Telemetry Subsystem Configuration Snapshot
on the Real-Time Server Event Trace

3-58 305-CD-043-001

3.2.7.4 Request for Command Authority Arrives on the Workstation Scenario

3.2.4.7.1 Request for Command Authority Arrives on the Workstation Abstract

The purpose of the Request for Command Authority Arrives on the Workstation scenario is to
describe how the workstation RMS acts upon a user request for command authority.

3.2.4.7.2 Request for Command Authority Arrives on the Workstation Summary
Information

Interfaces:

SCDO/CSS Authorization Service

FOS User Interface

Stimulus:

The user, wishing to send real-time commands to a spacecraft associated with a particular
string, sends a Command Privilege Request, via the user interface.

Desired Response:

The RMS software will determine if the user is eligible to receive the command authority
privilege, and , if so, will forward the Request to the RTS RMS where the Command
software will be notified of the new user with Command Authority.

Pre-Conditions:

A Real-Time or Simulation String will be available for the user to request Command Authority
on.

Post-Conditions:

The user with Command Authority will be able to send commands to a spacecraft on a
particular string.

3.2.4.7.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a
FrGrCommandPrivilegeRequest is returned. The Controller invokes the
CommandPrivilegeRequest object's Execute operation. A string search is performed and the string
is found. Once it is determined that the string found is not a backup string, the CSMS is requested
to validate the User and Workstation ID's as being valid for command authority. Validation is
complete and the FrGrCommandPrivilegeRequest object is forwarded to the RTS RMS. The
backup string is found and the same Request object is forwarded to the RTS RMS that is
responsible for the backup string. Once both RTS RMS's have finished processing the
CommandPrivilegeRequest, the FUI is notified and the FrGrCommandPrivilegeRequest object is
deleted.

3-59
305-C

D
-043-001

3.2.4.7.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController FrGrRequestHandler RWSet FrGrCommandPriviledgeRequest FrGrWsRmsRequestProxyFoGnCsmsIFRWSet FrGrWsRmsRequestProxy

notifyRequestToExecute

findString

requestDoneExecuting

returnRequest

deleteRequest

sendThisRequestToRtsRms

RtsRmsDoneExecutingRequest

notifyFuiOfRequest
Completion

stringFound

checkCAid

CAidValid

findBackupString

BackupStringFound

sendThisRequestToBackupRtsRms

BackupRtsRmsDoneExecutingRequest

checkCAwsId

CAwsIdValid

checkQueue

Get Request
From Queue

StringIsNot
ABackup

Figure 3.2.4.7.4-1. Request for Command Authority Arrives on the Workstation Event Trace

3-60 305-CD-043-001

3.2.4.8 Request for Command Authority Arrives on the Real-Time Server Scenario

3.2.4.8.1 Request for Command Authority Arrives on the Real-Time Server
Abstract

The purpose of the Request for Command Authority Arrives on the Real-Time Server scenario is
to describe how a command authority change is sent to Command.

3.2.4.8.2 Request for Command Authority Arrives on the Real-Time Server
Summary Information

Interfaces:

Command Subsystem

Stimulus:

The RMS on the workstation forwards a FrGrCommandPrivilegeRequest object to the RTS
RMS for processing.

Desired Response:

The RMS software will notify the Command software of the new user with the Command
Authority privilege.

Pre-Conditions:

A Real-Time or Simulation String will be available for the user to request Command Authority
on.

Post-Conditions:

The Command software will be able to accept commands from a new user with the Command
Authority privilege.

3.2.4.8.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmsIF and a FrGrCommandPrivilegeRequest
is returned The Controller invokes the FrGrCommandPrivilegeRequest object's Execute
operation. A string search is performed and the string is found. The string's CAid and CAwsID is
changed. The FrGrCommand object is retrieved from the string and the corresponding
FrGrCommandProcess object is notified of the new CAid and CAwsID. The
FrGrCommandProcess object sends this information to the Command process it is associated with.
Once the Command process is reconfigured, the new Command Userstation ID is sent to the RMS
Resource Monitor Task in order for it to begin monitoring the new CA userstation and stop
monitoring the old CA userstation. A FrGrTableUpdateRequest is created and multicasted to each
WS RMS in order for the WS RMS String Tables to be updated. The Controller is notified that the
Request has finished processing and the WS RMS that sent the Request is notified. Finally, the
Controller will delete the Request.

3-61
305-C

D
-043-001

3.2.4.8.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController RWSet FrGrCommandPriviledgeRequest FrGrRmsWsRmsIFFrGrString FrGrCommand FoGnRmsFormatProxy FrGrStrManResMonProxyFrGrCommandProcessRWSetFrGrTableUpdateRequest

notifyRequestToExecute

findString

requestDoneExecuting

returnRequest

deleteRequest

notifyWsRmsOfRequest
Completion

stringFound

changeCAidToUserId

changeCAwsIdToWsId

getCommandObject

notifyCommandProcessOfNewCAidAndCAwsID

multicastTableUpdateRequestToEachWS

reconfig

reconfigComplete

CommandProcessNotifiedOfNewCAidAndCAwsID

sendNewCAidAndCAwsID

fwdNewCAidAnd
CAwsID

reconfigComplete

checkQueue

GetRequest
FromQueue

CreateTableUpdate
Request

Figure 3.2.4.8.4-1. Request for Command Authority Arrives on the Real-Time Server Event Trace

3-62 305-CD-043-001

3.2.4.9 Request for Telemetry Configuration Change Arrives on the Workstation
Scenario

3.2.4.9.1 Request for Telemetry Configuration Change Arrives on the Workstation
Abstract

The purpose of the Request for Telemetry Configuration Change Arrives on the Workstation
scenario is to describe how the WS RMS acts upon a user request to change the configuration of
the Telemetry Subsystem on the RTS.

3.2.4.9.2 Request for Telemetry Configuration Change Arrives on the Workstation
Summary Information

Interfaces:

Telemetry Subsystem

FOS User Interface Subsystem

Stimulus:

The user, wishing to send a limit adjustment to a particular telemetry subsystem, sends an
Adjust Limit Request, via the user interface.

Desired Response:

The RMS software will determine that the configuration change is for telemetry on the RTS
and forward the Request to the RTS RMS if it came from a valid Ground Controller.

Pre-Conditions:

A string will have to already have been created in order to change its configuration.

A user will need to have the Ground Control Privilege before sending the Request. Otherwise,
the Request will be rejected by the WS RMS.

Post-Conditions:

The telmetry processes on the RTS will be reconfigured to reflect the configuration change.

All mirrored telemetry processes on the userstation will be reconfigured to reflect the
configuration change.

3.2.4.9.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrAdjustLimitRequest is
returned. The Controller invokes the AdjustLimitRequest object's Execute operation. A string
search is performed and a nondedicated string is found. The FrGrAdjustLimitRequest's
mySendFlag attribute is checked to ensure that the Request arrived from the FUI and will need to
be forwarded to the RTS RMS. The User ID and User WS ID is checked to ensure that the Request
came from a valid Ground Controller. The Request is validated and the FrGrAdjustLimitRequest
object is forwarded to the RTS RMS. A backup string is found and the FrGrAdjustLimitRequest
object is forwarded to the RTS RMS responsible for the backup string. A second
FrGrAdjustLimitRequest object is sent back from the RTS RMS in order for the telemetry on this
particular workstation to be reconfigured to reflect the limit adjustment. The second

3-63 305-CD-043-001

FrGrAdjustLimitRequest object is notified to execute by the original FrGrAdjustLimitRequest
object. A string search is performed and the nondedicated string is found. The
FrGrAdjustLimitRequest object's mySendFlag is checked and it ensures that this
FrGrAdjustLimitRequest object will not be forwarded back to the RTS RMS. The FrGrTelemetry
object is retrieved from the string and the corresponding telemetry processes are reconfigured via
the FrGrTelemetryProcess object. The original FrGrAdjustLimitRequest object is notified that the
second FrGrAdjustLimitRequest object has completed execution and the original
FrGrAdjustLimitRequest object deletes the second FrGrAdjustLimitRequest object. The RTS
RMS sends back the completion of the original FrGrAdjustLimitRequest and the FUI is notified
that the AdjustLimitRequest has been processed. The FrGrAdjustLimitRequest is deleted.

3.2.4.9.4 State Transition Description

3.2.4.10 Request for Telemetry Configuration Change Arrives on the Real-Time
Server Scenario

3.2.4.10.1 Request for Telemetry Configuration Change Arrives on the Real-Time
Server Abstract

The purpose of the Request for Telemetry Configuration Change Arrives on the Real-Time server
scenario is to describe how the telemetry configuration change is sent to the appropriate telemetry
process.

3.2.4.10.2 Request for Telemetry Configuration Change Arrives on the Real-Time
Server Summary Information

Interfaces:

Telemetry Subsystem

FOS User Interface Subsystem

Stimulus:

The RMS on the workstation forwards a FrGrAdjustLimitRequest object to the RTS RMS for
processing.

Desired Response:

The RMS software will send the configuration change to the appropriate telemetry processes
as well as all mirrored userstations.

Pre-Conditions:

A string will have to already have been created in order to change its configuration.

Post-Conditions:

The telmetry processes on the RTS will be reconfigured to reflect the configuration change.

All mirrored telemetry processes on the userstation will be reconfigured to reflect the
configuration change.

3-64
305-C

D
-043-001

FrGrController FrGrRequestHandler RWSet FrGrAdjustLimitRequest FrGrString FrGrWsRmsRequestProxy FrGrTelemetry FrGrAdjustLimitRequest FtTlTelemetryConfigFrGrTelemetryProcessRWSet FrGrRmsWsRmsIF FrGrWsRmsRequestProxy

notifyRequestToExecute

findString

requestDoneExecuting

returnRequest

deleteRequest

notifyFuiOfRequest
Completion

StringFound

sendRequestToRtsRms

findBackupString

BackupStringFound

sendRequestToBackupRtsRms

checkGCid&GCwsId

userIdMatchesGCid&
WksIdMatchesGCwsId

returnGndConfigChangeReq

notifyRequestToExecuteOnTheWS

findString

stringFound

MySendFlagIs1

mySendFlagIsZero

stringIsNotDedicated

receiveAdjustLimitRequestCompNotif

reconfigTlm

reconfigTlmComplete

deleteRequest

requestDoneExecuting

reconfigComplete

reconfig

forwardConfigChange

stringIsNotDedicated

reconfigComplete

checkQueue

GetRequest
FromQueue

checkForGndConfigChangeReq

GetTelemetryObject

Figure 3.2.4.9.4-1. Request for Telemetry Configuration Change Arrives on the Workstation Event Trace

3-65 305-CD-043-001

3.2.4.10.3Scenario Description

The Controller checks the queue of the FrGrRmsWsRmsIF and a FrGrAdjustLimitRequest is
returned. The Controller invokes the FrGrAdjustLimitRequest object's Execute operation. A
string search is performed and the string is found. The FrGrTelemetry object is retrieved from the
string and the corresponding telemetry processes are reconfigured, via the FrGrTelemetryProcess
object, to reflect the limit adjustment. The mySendFlag attribute is set and the
FrGrAdjustLimitRequest is sent back to each mirrored WS RMS in order for its telemetry process
to be reconfigured. The WS RMS is notified that the AdjustLimitRequest has been processed and
the FrGrAdjustLimitRequest object is deleted.

3-66
305-C

D
-043-001

3.2.4.10.4
 S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController RWSet FrGrAdjustLimitRequest FrGrString FrGrRmsWsRmsIF FrGrTelemetry FtTlTelemetryConfigFrGrTelemetryProcessRWSetFrGrRtsRmsRequestProxy

notifyRequestToExecute

findString

requestDoneExecuting

returnRequest

deleteRequest

StringFound

GetTelemetry

reconfigTelemetry

getMirroredWS

getMirroredWS

getMirroredWS

noOtherMirroredWS

notifyWsRmsOfRequestCompletion

sendRequestToMirroredWS

sendRequestToMirroredWS

setSendFlag

fwdConfigChange

reconfigComplete

reconfig

reconfigComplete

reconfigComplete

chechQueue

GetRequest
FromQueue

Figure 3.2.4.10.4-1. Request for Telemetry Configuration Change Arrives on the Real-Time Server Event

3-67 305-CD-043-001

3.2.4.11 Request for Dedicated Replay Telemetry Arrives on the Workstation from
DMS Scenario

3.2.4.11.1 Request for Dedicated Replay Telemetry Arrives on the Workstation
from DMS Abstract

The purpose of the Request for Dedicated Replay Telemetry Arrives on the Workstation from
DMS is to describe how the workstation RMS acts upon a user request for dedicated replay service.

3.2.4.11.2 Request for Dedicated Replay Telemetry Arrives on the Workstation from
DMS Summary Information

Interfaces:

Parameter Server Subsystem

Telemetry Subsystem

Data Management Subsystem

Stimulus:

A user, wishing to establish a dedicated replay service on the workstation, enters a Replay
Service Request on the command line. FUI, in turn, sends a Replay Service Request to the
DMS. DMS determines if there are any database crossovers in the time period selected and
sends this Request to the RMS.

Desired Response:

The RMS software will create a Dedicated Replay String on the userstation that includes a
replay telemetry process.

Pre-Conditions:

The telemetry data to be replayed is made available by DMS.

Post-Conditions:

A telemetry process has been created and is capable of receiving replay data from DMS.

3.2.4.11.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrReplayServiceRequest is
returned. The Controller invokes the ReplayServiceRequest object's Execute operation. The
NULL value for the myRTSid attribute indicates that the Request is for dedicated replay telemetry.
A string is made and added to the String Table. Since a DbId was provided with the Request, RMS
will not have to query DMS for a DbId. A FrGrParameterServer object is created, added to the
string, and the Parameter Server process is started. The FrGrTelemetry object is created and the
corresponding FrGrTelemetryProcess object is created. The FrGrTelemetryProcess object will
communicate with the telemetry process proxy. The FrGrTelemetry object is added to the string
and the Request object will notify the FrGrTelemetry object to configure. FrGrTelemetry will
notify the FrGrTelemetryProcess object to start. The FrGrTelemetryProcess object will create its
process and tell it the RMS address on the command line. The process will notify RMS that it is
alive. The FrGrTelemetry object will configure the telemetry process via the
FrGrTelemetryProcess object. The Controller is notified that the Request has been processed and
the DMS is notified of this as well. The FrGrReplayServiceRequest object is then deleted.

3-68
305-C

D
-043-001

3.2.4.11.4 S
tate T

ran
sitio

n
 D

escrip
tio

n

FrGrRequestHandler FrGrController FrGrReplayServiceRequest RWSet FrGrDedicatedReplayString FrGrTelemetry FtTlTelemetryConfigFrGrTelemetryProcessRWSet FrGrParameterServer

returnRequest

executeRequest

makeString

myRTSid
IsNull

addStringToTable

config

TelemetryCreated

executionComplete

notifyDmsOfRequest
Completion

deleteRequest

addObjectToString

Config

createTlmProcess

tlmProcessCreated

sendConfigInfo

configInfoReceived
configComplete

createFrGrTelemetry
ProcessObject

dbidPresent

createTelemetryObject

checkQueue

GetRequest
FromQueue

createParameterServerObject

addParameterServerToString

startParameterServer

Figure 3.2.4.11.4-1 Request for Dedicated Replay Telemetry Arrives on the Workstation from DMS Event Trace

3-69 305-CD-043-001

3.2.4.12 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Scenario

3.2.4.12.1 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Abstract

The purpose of the Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis scenario is to describe how the WS RMS acts upon a request for a dedicated replay
service.

3.2.4.12.2 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Summary Information

Interfaces:

FOS Analysis Subsystem

Parameter Server Subsystem

Telemetry Subsystem

Stimulus:

Analysis, wishing to establish a dedicated replay telemetry process on the workstation, sends
a Replay Service Request, via the Analysis Subsystem.

Desired Response:

The RMS software will create a Dedicated Replay String on the userstation that includes a
replay telmetry process.

Pre-Conditions:

The telemetry data to be replayed is made available by DMS.

Post-Conditions:

A telemetry process has been created and is capable of receiving replay data from DMS.

3.2.4.12.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrReplayServiceRequest is
returned. The Controller invokes the ReplayServiceRequest object's Execute operation. The
NULL value for the myRTSid attribute indicates that the Request is for dedicated replay telemetry.
A string is made and added to the String Table. Since a DbId was provided with the Request, RMS
will not have to query DMS for a DbId. A FrGrParameterServer object is created, added to the
string, and the Parameter Server process is started. The FrGrTelemetry object is created and the
corresponding FrGrTelemetryProcess object is created. The FrGrTelemetryProcess object will
communicate with the telemetry process proxy. The FrGrTelemetry object is added to the string
and the Request object will notify the FrGrTelemetry object to configure. FrGrTelemetry will
notify the FrGrTelemetryProcess object to start. The FrGrTelemetryProcess object will create its
process and tell it the RMS address on the command line. The process will notify RMS that it is
alive. The FrGrTelemetry object will configure the telemetry process via the
FrGrTelemetryProcess object. The Controller is notified that the Request has been processed and
the Analysis Subsystem is notified of this as well. The FrGrReplayServiceRequest object is then
deleted.

3-70
305-C

D
-043-001

3.2.4.12.4 S
tate T

ran
sitio

n
 D

escrip
tio

n

FrGrRequestHandler FrGrController FrGrReplayServiceRequest RWSet FrGrDedicatedReplayString FrGrTelemetry FtTlTelemetryConfigFrGrTelemetryProcessRWSet FrGrParameterServer

returnRequest

executeRequest

makeString

myRTSid
IsNull

addStringToTable

config

TelemetryCreated

executionComplete

notifyAnaOfRequest
Completion

deleteRequest

addObjectToString

Config

createTlmProcess

tlmProcessCreated

sendConfigInfo

configInfoReceived
configComplete

createFrGrTelemetry
ProcessObject

dbidPresent

createTelemetryObject

checkQueue

GetRequest
FromQueue

createParameterServerObject

addParameterServerToString

startParameterServer

Figure 3.2.4.12.4-1 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Event Trace

3-71 305-CD-043-001

3.2.4.13 Request for a String Failover Arrives on the Workstation Scenario

3.2.4.13.1 Request for a String Failover Arrives on the Workstation Abstract

The purpose of the Request for a String Failover Arrives on the Workstation scenario is to describe
how the workstation RMS acts upon user request for a string failover.

3.2.4.13.2 Request for a String Failover Arrives on the Workstation Summary
Information

Interfaces:

FOS User Interface Subsystem

Stimulus:

The user, wishing to failover a string, sends a StringFailoverRequest to RMS, via the user
interface.

Desired Response:

The RMS software will forward the Request to the RTS where the failed string resides in order
for it to be deactivated. Once the failed string has been deactivated, the Request is
forwarded to the RTS where the active string resides in order for it to be activated. As a
result, the failed string has been failed over to a backup string.

Pre-Conditions:

A backup string has already been created.

The user sending the Failover Request has Ground Control Authority on the failed and backup
strings.

Post-Conditions:

The failed string has been switched to inactive. Commands cannot be sent to the spacecraft via
the failed string. Telemetry data, NASCOM blocks, and CODA reports are not being
archived by the failed string and GCMRs cannot be sent to NCC via the RCM software.

The backup string has been switched to an active string and all processing previously done via
the failed string is done by the new active string.

3.2.4.13.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrStringFailoverRequest is
returned. The Controller invokes the StringFailoverRequest object's Execute operation. A string
search is performed and the failed string is found. The UserId and User Workstation ID is ensured
to be valid Ground Controller IDs. The myActionFlag attribute is set to Deactivate and the
FrGrStringFailoverRequest is passed to the RTS RMS for processing.

Once the RTS RMS has finished processing the Request, another string search is performed and
the backup string is found. The Request's Action Flag is set to "Activate" and sent to the RTS
where the backup string resides. Once the RTS RMS has finished processing the Request, FUI is
notified and the FrGrStringFailoverRequest object is deleted.

3-72
305-C

D
-043-001

3.2.4.13.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController FrGrRequestHandler RWSet FrGrStringFailoverRequest FrGrWsRmsRequestProxyFrGrRealtimeString FrGrWsRmsRequestProxyRWSet

notifyRequestToExecute

findFailedString

returnRequest

sendThisRequestToRtsRms

RtsRmsDoneExecutingRequest

stringFound

findBackupString

stringFound

sendThisRequestTo
RtsRms

RtsRmsDoneExecuting
Request

requestDoneExecuting

notifyFuiOfRequest
Completion

deleteRequest

user&WsIdIsValidGC

set myActionFlagToActivate

checkQueue

GetRequest
From Queue

Set myActivationFlag
To Deactivate

Figure 3.2.4.13.4-1. Request for a String Failover Arrives on the Workstation Event Trace

3-73 305-CD-043-001

3.2.4.14 Request for String Deactivation Arrives on the Real-Time Server Scenario

3.2.4.14.1 Request for String Deactivation Arrives on the Real-Time Server Abstract

The purpose of the Request for String Deactivation Arrives on the Real-Time Server scenario is to
describe how the RTS RMS acts upon a request for string deactivation. String deactivation
involves the change of the logical string's operational state from Active to Inactive.

3.2.4.14.2 Request for String Deactivation Arrives on the Real-Time Server
Summary Information

Interfaces:

Command Subsystem

Real-Time Contact Management Subsystem

Telemetry Subsystem

FUI Ground Script Controller Subsystem

Stimulus:

The workstation RMS sends a FrGrStringFailoverRequest object to the RTS RMS for string
deactivation.

Desired Response:

The RMS software will deactivate a failed string by notifying Command, RCM, Telemetry,
and the Ground Script Controller software of its new state.

Pre-Conditions:

The string that the RTS RMS is attempting to deactivate will need to already exist.

Post-Conditions:

The Command, RCM, Telemetry, and Ground Script Controller software will be notified of its
inactive state.

3.2.4.14.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmsIF and a FrGrStringFailoverRequest is
returned. The Controller invokes the FrGrStringFailoverRequest object's Execute operation. The
Action Flag is checked and found to have a value of "Deactivate." This indicates to the Request
object that it needs to deactivate a string rather than activate it. A string search is performed and
the failed string is found. After changing the string's state, a TableUpdateRequest object is created
and multicasted to each WS RMS in order for the WS RMS String Table to be updated. The
FrGrCommand object is retrieved from the string. In Figure 3.2.4.15.4-2, the FrGrCommand
object's state is changed. The corresponding command processes are notified of their new state via
the FrGrCommandProcess objects. In Figure 3.2.4.14.4-1, the Request object is notified that the
Command state has been changed and the FrGrRTContact object is retrieved from the string. In
Figure 3.2.4.15.4-4, the FrGrRTContact object's state is changed. The new state is sent to the
RCM processes via the FrGrRcmProcess objects. In Figure 3.2.4.14.4-1, the Request object is
notified that the RTContact state has been changed and the FrGrTelemetry object is retrieved from

3-74 305-CD-043-001

the string. In Figure 3.2.4.15.4-3, the FrGrTelemetry object's state is changed. The new state is
sent to the telemetry processes via the FrGrTelemetryProcess objects. In Figure 3.2.4.14.4-1, the
Request object is notified that the Telemetry state has been changed and the
FrGrGroundScriptController object is retrieved from the string. In Figure 3.2.4.15.4-4, the
FrGrGroundScriptController object's state is changed and the new state is sent to the Ground Script
Controller process. In Figure 3.2.4.14.4-1, the Request object is notified that the Ground Script
Controller state has been changed. The WS RMS is notified that the Request has been processed,
via the Controller, and the FrGrStringFailoverRequest is deleted.

3-75
305-C

D
-043-001

3.2.4.14.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController RWSet FrGrStringFailoverRequest FrGrRmsWsRmsIF FrGrRealtimeString

See Appropriate
Subsystem

Reconfiguration
PageRWSetFrGrTableUpdateRequest FrGrRtsRmsRequestProxy

returnRequest

notifyRequestToExecute

findFailedString

StringFound

changeStringState

multicastTableUpdate
Request

getCommand

changeCommandState

CommandStateChanged

getRTContact

changeRTContactState

RTContactStateChanged

requestDoneExecuting

notifyWsOfRequestCompletion

deleteRequest

getTelemetry

changeTelemetryState

TelemetryStateChanged

myActionFlag=Deactivate

changeGscState

GscStateChanged

getGsc

checkQueue

GetRequest
FromQueue

CreateTableUpdate
Request

Figure 3.2.4.14.4-1. Request for String Deactivation Arrives on the Real-Time Server Event Trace

3-76 305-CD-043-001

3.2.4.15 Request for String Activation Arrives on the Real-Time Server Scenario

3.2.4.15.1 Request for String Activation Arrives on the Real-Time Server Abstract

The purpose of the Request for String Activation Arrives on the Real-Time Server scenario is to
describe how the RTS RMS acts upon a request to activate a logical string. String activation
involves the change of the logical string's operational state from Backup to Active.

3.2.4.15.2 Request for String Activation Arrives on the Real-Time Server Summary
Information

Interfaces:

Command Subsystem

Real-Time Contact Management Subsystem

Telemetry Subsystem

FUI Ground Script Controller Subsystem

Stimulus:

The workstation RMS sends a FrGrStringFailoverRequest object to the RTS RMS for string
activation.

Desired Response:

The RMS software will activate a backup string by notifying Command, RCM, Telemetry, and
the Ground Script Controller software of its new state.

Pre-Conditions:

The string that the RTS RMS is attempting to activate will need to already exist.

Post-Conditions:

The Command, RCM, Telemetry, and Ground Script Controller software will be notified of its
active state.

3.2.4.15.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmsIF and a FrGrStringFailoverRequest is
returned. The Controller invokes the FrGrStringFailoverRequest object's Execute operation. The
Action Flag is checked and found to not have a value of "Deactivate." This indicates to the Request
object that it needs to activate a string rather than deactivate it. A string search is performed and
the backup string is found. The string's state is changed and the myFailedRTSid is found to not
have a value of "FAILED." Therefore, a message does not have to be multicasted to the WS RMS's
to remove the failed string from their string tables. The RTS that the failed string resides on is
capable of updating the string table. The backup string's ActiveStringID attribute is changed to
NULL as a result of the string becoming active rather than backing up the string identified by the
ActiveStringID. A TableUpdateRequest object is created and multicasted to each WS RMS in
order for the WS RMS String Table to be updated. The FrGrTelemetry object is retrieved from the
string. In Figure 3.2.4.15.4-3, the FrGrTelemetry object's state is changed. The new state is sent
to the telemetry processes via the FrGrTelemetryProcess objects. In Figure 3.2.4.15.4-1, the

3-77 305-CD-043-001

Request object is notified that the Telemetry state has been changed and the FrGrCommand object
is retrieved from the string. In Figure 3.2.4.15.4-2, the FrGrCommand object's state is changed.
The corresponding command processes are notified of their new state via the
FrGrCommandProcess objects. In Figure 3.2.4.15.4-1, the Request object is notified that the
Command state has been changed and the FrGrRTContact object is retrieved from the string. In
Figure 3.2.4.15.4-4, the FrGrRTContact object's state is changed. The new state is sent to the
RCM processes via the FrGrRcmProcess objects. In Figure 3.2.4.15.4-1, the Request object is
notified that the RTContact state has been changed and the FrGrGroundScriptController object is
retrieved from the string. In Figure 3.2.4.15.4-4, the FrGrGroundScriptController object's state
is changed and the new state is sent to the Ground Script Controller process. In Figure 3.2.4.15.4-
1, the Request object is notified that the Ground Script Controller state has been changed. The WS
RMS is notified that the Request has been processed, via the Controller, and the
FrGrStringFailoverRequest is deleted.

3-78
305-C

D
-043-001

3.2.4.15.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrController RWSet FrGrStringFailoverRequest FrGrRmsWsRmsIF FrGrRealtimeString

See Appropriate
Subsystem

Reconfiguration
Page

RWSetFrGrTableUpdateRequest FrGrRtsRmsRequestProxy

returnRequest

notifyRequestToExecute

findString

StringFound

changeStringState

multicastTableUpdateRequest

getCommand

changeCommandState

CommandStateChanged

getRTContact

changeRTContactState

requestDoneExecuting

notifyWsOfRequestCompletion

deleteRequest

getTelemetry

changeTelemetryState

TelemetryStateChanged

myActionFlag!=Deactivate

myFailedRTSid!=FAILED

changeActiveStringID attribute to NULL

RTContactStateChanged

changeGscState

GscStateChanged

getGsc

checkQueue

GetRequest
FromQueue

CreateTableUpdateRequest

Figure 3.2.4.15.4-1. Request for String Activation Arrives on the Real-Time Server Event Trace

3-79
305-C

D
-043-001

FrGrStringFailoverRequest FrGrCommand FrGrCommandProcess FrGrCommandProcess FrGrCommandProcessFoGnRmsTransmitProxy FoGnCmdFopRmsProxyFoGnRmsFormatProxy

changeCommandState
Reconfig

SendNewState

NewStateReceivedCommandProcess
Reconfigured

Reconfig
SendNewState

NewStateReceived
CommandProcessReconfigured

Reconfig
SendNewState

NewStateReceived
CommandProcessReconfigured

CommandStateChanged

Figure 3.2.4.15.4-2. Command State Change Event Trace

3-80
305-C

D
-043-001

FrGrStringFailoverRequest FrGrTelemetry FrGrTelemetryProcess FrGrTelemetryProcess FrGrTelemetryProcessFtTlTelemetryConfig FtTlTelemetryConfigFtTlTelemetryConfig FrGrTelemetryProcess FtTlDumpConfig

changeTelemetryState
Reconfig

SendNewState

NewStateReceived
TelemetryProcess

Reconfigured

Reconfig
SendNewState

NewStateReceived
TelemetryProcessReconfigured

Reconfig
SendNewState

NewStateReceived
TelemetryProcessReconfigured

Reconfig
SendNewState

NewStateReceived
TelemetryProcessReconfigured

TelemetryStateChanged

Figure 3.2.4.15.4-3. Telemetry State Change Event Trace

3-81
305-C

D
-043-001

FrGrStringFailoverRequest FrGrRTContact FrGrRcmProcess FrGrRcmProcess FrGrGroundScriptControllerFoGnRmsRcmProxy FuCcGscProxyFoGnRmsRcmProxy

Reconfig
SendNewState

NewStateReceivedRcmProcess
Reconfigured

Reconfig
SendNewState

NewStateReceived
RcmProcessReconfigured

GscStateChanged

changeRTContact

RTContactState
Changed

changeGscState

NewStateReceived

SendNewState

Figure 3.2.4.15.4-4. Real-Time Contact Management and Ground Script Controller

3-82 305-CD-043-001

3.2.5 RMS String Manager Component Data Dictionary

FrGrAdjustLimitRequest

class FrGrAdjustLimitRequest

This class is responsible for containing all functionality necessary for processing the limit
adjust request.

Base Classes

public FrGrRequest

Public Construction

FrGrAdjustLimitRequest(const FrGrAdjustLimitRequest&)

This routine creates a duplicate of this class.

FrGrAdjustLimitRequest()

This routine creates an instance of this class.

~FrGrAdjustLimitRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt configTlm()

This routine finds the appropriate telemetry object i and

notifies it of the configuration change.

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

EcTInt sendConfigChange(FrGrRmsWsRmsIF* PassedFrGrRmsWsRmsIF)

This routine iterates through the list of mirrored workstations and sends them the
configuration change.

Private Data

EcTInt myParameterId

This member variable identifies the parameter identifier

of the parameter for which tht user has requested a limit
setting change.

EcTInt mySetId

This member variable identifies the set of parameters to

be affected by the request.

3-83 305-CD-043-001

RWCString myTelemetryType

This member variable indentifies the telemetry subsystem to be reconfigured. This could
be HouseKeeping, Health and Safety, Standby or Diagnostic.

RWCString myType

This member variable identifies tht type of limit, i.e. boundary, rail or delta.

EcTDouble myValue

This member variable identifies the new limit value

FrGrBackupServiceRequest

class FrGrBackupServiceRequest

This class is responsible for containing all functionality necessary for processing the backup
service request.

Base Classes

public FrGrRequest

Public Construction

FrGrBackupServiceRequest(const FrGrBackupServiceRequest&)

This routine creates a duplicate of this class.

FrGrBackupServiceRequest()

This routine creates an instance of this class.

~FrGrBackupServiceRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

EcTInt CreateGSC(FrGrStrManResMonIF* PassedStrManResMonIF)

This routine creates a GroundScriptController object for FUI and sets the FUI attributes, it
also adds the GroundScriptController object to the string resource list.

EcTInt createCmd(FrGrStrManResMonIF* PassedStrManResMonIF)

This routine is responsible for creation of the Command Object and notification of the
Command Object that it needs to configure a Command Process. In addition, it notifies the
Resource Monitor Task of the new Command Process.

3-84 305-CD-043-001

EcTInt createParamServer(FrGrStrManResMonIF* PassedStrManResMonIF)

This routine is responsible for the creation of the Parameter Server Object.

EcTInt createRcm(FrGrStrManResMonIF* PassedStrManResMonIF)

This routine is responsible for creation of the RTContact Object and notification of the
RTContact Object that it needs to configure a RCM Process. In addition, it notifies the
Resource Monitor Task of the new RCM Process.

EcTInt createTlm(FrGrStrManResMonIF* PassedStrManResMonIF)

This routine is responsible for creation of the Telemetry Object and notification of the
Telemetry Object that it needs to configure a particular telemetry process. In addition, it
notifies the Resource Monitor Task of the new Telemetry Process.

FrGrString* findString(RWSet* PassedStringTable, int PassedStringID)

This routine finds a particular string in a string table based on the StringId.

FrGrString* makeString()

This routine makes a particular string based on attributes of the request.

Private Data

RWCString myCaWsId

This member variable identifies the workstation with Command Authority.

RWCString myCald

This member variable identifies the person with Command Authority.

RWCString myDiagnosticTlmConfigFilename

This member variable identifies the configuration filename for the Diagnostic Telemetry
process.

RWCString myEoutMgrRcmConfigFilename

This member variable identifies the configuration filename for the RCM EoutMgr process.

RWCString myFopCmdConfigFilename

This member variable identifies the configuration filename for the Command process.

RWCString myFormatCmdConfigFilename

This member variable identifies the configuration filename for the Format Command
process.

RWCString myGcId

This member variable identifies the person with Ground Station priviledge.

RWCString myGcWsId

This member variable identifies the workstation with Ground Control priviledge.

RWCString myHStlmConfigFilename

This member variable identifies the configuration filename for the Health & Safety

3-85 305-CD-043-001

Telemetry process.

RWCString myHkTlmConfigFilename

This member variable identifies the configuration filename for the Housekeeping
Telemetry process.

RWCString myMode

This member variable identifies the logical string mode, i.e. operational, test or training.

RWCString myNoutMgrRcmConfigFilename

This member variable identifies the configuration filename for the RCM NoutMgr process.

EcTInt myRTSid

This member variable identifies the Real-Time Server on which this backup string is to be
created.

RWCString mySbTlmConfigFilename

This member variable identifies the configuration filename for the Standby Telemetry
process.

RWCString myScid

This member variable identifies the spacecraft.

EcTInt myStringID

This member variable identifies the logical string for which this backup string is to be
created.

RWCString myUplinkCmdConfigFilename

This member variable identifies the configuration filename for

the Uplink Command process.

RWCString myUserID

This member variable identifies the user from whom this request originated.

RWCString myWksID

This member variable identifies the user station from which this request originated.

FrGrCommand

class FrGrCommand

A description of the class

3-86 305-CD-043-001

Base Classes

public FrGrSoftware

Public Construction

FrGrCommand(const FrGrCommand&)

FrGrCommand(const FrGrCommand&)

This member function creates a duplicate of this class.

FrGrCommand()

This member fuunction is the default constructor for this class

~FrGrCommand()

This member function is the destructor for this class. It will call the FrGrCommand::Stop()
operation.

Public Functions

EcTInt ChangeState(State)

This member function will change the myState attribute of this class as well as send the
change to the CMD processes.

EcTInt Config(RWCString FormatFile, RWCString TransmitFile, RWCString FopFile)

Config(RWCString FormatFile, RWCString TransmitFile, FopFile)

This member function calls the MakeRmsAddress and the MakeDmsAddress subroutines
before calling myCmdFormat->StartCmdProcess(), myCmdTransmit->StartCmdProcess()
and myCmdFop->StartCmdProcess(). These operations will start and configure the
corresponding CMD processes.

EcTInt Config(void)

This member function calls the MakeRmsAddress and the MakeDmsAddress subroutines
before calling myCmdFormat->StartCmdProcess(), myCmdFop->StartCmdProcess() and
myCmdTransmit->StartCmdProcess(). These operations will start and configure the
corresponding CMD processes.

EcTInt Reconfig(RWCSting configParameter)

This member function will determine which CMD process will receive a configuration
parameter and call either the myCmdFormat-> ReconfigCmdProcess(RWCString
configParameter), myCmdFop-> ReconfigCmdProcess(RWCString configParameter) or
myCmdTransmit-> ReconfigCmdProcess(RWCString configParameter).

EcTInt Snap(void)

This member function will notify the Format, Transmit and FOP processes to take a
configuration snapshot of themselves and update their mySnapFilename attribute.

EcTInt Stop(void)

This member function will call myCmdFormat->StopCmdProcess(), myCmdFOP-

3-87 305-CD-043-001

>StopCmdProcess and myCmdTransmit->StopCmdProcess().

Protected Functions

EcTInt MakeDmsAddress(void)

This member function will set the myRmsAddress attribute which will be used to start the
CMD processes.

EcTInt MakeRmsAddress(void)

This member function will set the myDmsAddress attribute which will be used to configure
the CMD processes.

Private Data

FrGrCommandProcess* myCmdFop

This member variable points to the Fop object.

FrGrCommandProcess* myCmdFormat

This member variable points to the Format object.

FrGrCommandProcess* myCmdTransmit

This member variable points to the Transmit object.

Address* myDmsAddress

This member variable identifies the address of the DMS process that the CMD processes
will communicate with.

FrGrCommandPriviledgeRequest

class FrGrCommandPriviledgeRequest

This routine is responsible for containing all functionality necessary for processing the
command priviledge request. It calls additional subroutines in order to accomplish this task

Public Construction

FrGrCommandPriviledgeRequest(const FrGrCommandPriviledgeRequest&)

This routine creates a duplicate of this class.

FrGrCommandPriviledgeRequest()

This routine creates an instance of this class.

~FrGrCommandPriviledgeRequest()

This routine deletes an instance of this class.

FrGrCommandProcess

class FrGrCommandProcess

This class us used to create, destroy, configure and reconfigure any of the potential command
processes, i.e. Format, Transmit or Frame Operations Procedure (FOP). It will also take a

3-88 305-CD-043-001

configuration snapshot of any of the aforementioned processes.

Base Classes

public FrGrCommand

Public Construction

FrGrCommandProcess(const FrGrCommandProcess&)

This member function is a "copy constructor", it creates a duplicate of this class.

FrGrCommandProcess(RWCString myDbid, RWCString myScid, myState, Address*
myRmsAddress)

This member function is the default constructor for this class.

~FrGrCommandProcess()

This member function is the destructor for this class. It will call the
FrGrCommandProcess::StopCmdProcess() member function.

Public Functions

EcTInt ConfigCmdProcess()

This member function sends configuration information to the FrGrCommandProcess
process after it has been started.

EcTInt ReconfigCmdProcess(RWCString configParameter)

This member function sends a reconfiguration parameter to the specified command
process.

EcTInt SnapCmdProcess(void)

This member function requests a configuration snapshot of the FrGrCommandProcess
process and updates the mySnapFilename attribute.

EcTInt SnapConfigCmdProcess(RWCString ConfigFile)

This member function sends snapshot configuration information to a command process
after it has been started.

EcTInt StartCmdProcess()

This member function will create a command process of one of the following command
types: Format, Transmit or FOP.

Protected Functions

EcTInt StopCmdProcess(void)

This member function will terminate a FrGrCommandProcess process.

3-89 305-CD-043-001

Private Data

FoGnCmdFopRmsProxy* myCmdFopProxy

This member variable points to the FoGnCmdFopRmsProxy.

EcTInt myCmdPid

This member variable identifies the command processes, Pid

RWCString myDbId

This member variable is the database identifier which is to be used by this process for the
extraction of database information.

FoGnRmsFormatProxy* myFormatProxy

This member variable points to the FoGnRmsFormatProxy.

FrGrCommand* myFrGrCommand

This member variable points to the FrGrCommand object that this object is part of.

Address* myRmsAddress

This member variable points to the address of the RMS process.

RWCString myScId

This member variable is the identifier of the space craft of which this process is supporting.

RWCString mySnapFilename

This member variable identifies a snapshot configuration filename.

FoGnRmsTransmitProxy* myTransmitProxy

This member variable points to the FoGnRmsTransmitProxy.

FrGrController

class FrGrController

This class serves as the controller or coordinator for the Resource Management Subsystem.
Among its duties is the coordination of creation, deletion, and updates to all RMS-sponsored
software that is part of a logical string. This is done through user directive and resource status
changes.

Public Construction

FrGrController(const FrGrController&)

FrGrController(const FrGrController&)

This member function creates a duplicate of this class.

FrGrController()This member function is the default constructor for this class.

~FrGrController()

This member function is the destructor for this class.

3-90 305-CD-043-001

Public Functions

int initialize()

This routine initializes the RMS based on the type of host it is running on.

int receiveRequest(FrGrRequest* receivedRequest)

This member function notifies a request that it is time to execute.

void run()

This routine notifies the FrGrRmsWsRmsIF object to begin its runs state.

Protected Functions

EcTInt MakeFdDsFileAccessor()

This routine creates the proxy for accessing DMS files.

EcTInt MakeFrGrRtsRmsRequestProxy()

This routine create a FrGrRtsRmsRequestProxy object in order for the RTS RMS to
communicate with the WS RMS's.

int exDefConDirs()

This routine iterates through the set of Default Configuration Directives and executes them.

int loadDefConInfo()

This routine loads the myDefConInfo object from the file names by the myDefConFile
attribute.

int makeDefConInfo()

This routine sets the myDefConInfo pointer to point to a RWSet. This will be used to store
the Default Configuration Requests.

EcTInt makeFdEvEventLoggerobject()

makeFdEvEventLogger

This routine creates a FdEvEventLoggerIF object that will be used to communicate with
DMS to log events.

int makeFoGnCsmsIFobject()

This routine creates the FoGnCsmsIFobject that will be used to communicate with CSMS
for user and workstation authorization.

int makeFoPsClientIF()

This routine spawns a Parameter Server process and creates a FoGnRmsPsIF

int makeFrGrRequestHandler()

This routine creates a FrGrRequestHandler object that will be used to receive Requests.

int makeFrGrRmsWsRmsIFobject()

This routine creates the FrGrRmsWsRmsIFobject that will be used to communicate with
the WS RMS or the RTS RMS.

3-91 305-CD-043-001

int makeFrGrWsRmsRequestProxies()

This routine creates a FrGrWsRmsRequestProxy object for each RTS and places that IF
object into a RWSet.

int makeFrGrWsRmsRequestProxy(int RMSnodeID)

This routine creates a FrGrWsRmsRequestProxy object for the WS RMS to communicate
with the RTS RMS.

int makeStrManResMonProxy()

This routine creates a FrGrStrManResMonProxy object that will be used to communicate
with the Resource Monitor process.

int makeStringTable()

This routine sets the myStringTable pointer to point to a RWSet.

int queryRTSstrings()

This routine requests the string table from each RTS RMS in order for the WS RMS can
construct a comprehensive string table.

int reqDefConFile()

This routine sets the myDefConFile attribute and sends the request for the file to the
FoGnRmsDmsIF object.

int setRole()

This routine determines the type of host that the RMS is running on and sets the myHost
attribute.

Private Data

FrGrWsRmsRequestProxy* myCurrentFrGrWsRmsRequestProxy

This attribute points to a particular workstation RMS/RTS RMS interface object,
depending on which RTS RMS the workstation RMS is communicating with at a given
time.

RWCString myDefConFile

This attribute identifies the Default Configuration File to be used at initialization.

RWSet* myDefConInfo

This attribute points to the collection of Default Configuration Directives.

FdEvEventLogger* myFdEvEventLogger

This attribute points to the RMS/DMS Event Logger interface object.

FoDsFileAccessor* myFileAccessor

This attribute points to the FileAccessor proxy.

FoGnCsmsIF* myFoGnCsmsIF

This attribute points to the CSMS interface object.

3-92 305-CD-043-001

FoPsClientIF* myFoPsClientIF

This attribute points to the Parameter Server Client IF.

FrGrRequestHandler* myFrGrRequestHandler

This attribute points to the Request Handler object.

FrGrRmsWsRmsIF* myFrGrRmsWsRmsIF

This attribute points to the receiver object for WS RMS to RTS RMS communication.

FrGrStrManResMonProxy* myFrGrStrManResMonProxy

This attribute points to the interface object responsible for communication between the
RMS String Manager process and the RMS Resource Monitor process.

RWSet* myFrGrWsRmsRequestProxySet

This attribute points to a collection of interface objects responsible for letting a workstation
RMS communicate with each RTS RMS.

RWCString myHost

This attribute identifies the host machine where this instance of the RMS process is
running.

RWCString myOperationalDB

This attribute identifies the operational database that this RMS process is using.

FrGrRtsRmsRequestProxy* myRtsRmsRequestProxy

This attribute points to the RtsRmsRequestProxy object.

RWSet* myStringTable

This attribute points to the RMS String Table.

FrGrDataArchiver

class FrGrDataArchiver

This class is used to create, destroy, and configure, the Data Archiver Process.

Public Construction

FrGrDataArchiver(const FrGrDataArchiver&)

FrGrDataArchiver(const FrGrDataArchiver&)

This member function creates a duplicate of this class.

FrGrDataArchiver()

This member function is the default constructor for this class.

~FrGrDataArchiver()

This member function is the destructor for this class.

3-93 305-CD-043-001

Public Functions

EcTInt Config()

This member function sends configuration information to the DataArchiver process after it
has been started.

EcTInt Start()

This member function will create the Data Archiver process.

EcTInt Stop(void)

This member function will terminate a DataArchiver process.

Private Data

RWCString myDbId

This member variable identifies the Database that the data archiver process will use.

EcTInt myPid

This member variable identifies the Process ID that is associated with the Data Archiver
process.

FdCfRMSConfigProxy* myRMSConfigProxy

This member variable points to the RMSConfigProxy.

Address* myRmsAddress

This member variable identifies the RMS process that the DataArchiver process is started
by.

RWCString myScId

This member variable identifies the spacecraft that the DataArchiver process is associated
with. It will be used as configuration data.

FrGrGroundControlPriviledgeRequest

class FrGrGroundControlPriviledgeRequest

This class is responsible for containing all functionality necessary for processing the ground
control priviledge request. It calls additional subroutines in order to accomplish this task.

Public Construction

FrGrGroundControlPriviledgeRequest(const FrGrGroundControlPriviledgeRequest&)

This routine creates a duplicate of this class.

FrGrGroundControlPriviledgeRequest()

This routine creates an instance of this class.

~FrGrGroundControlPriviledgeRequest()

This routine deletes an instance of this class.

3-94 305-CD-043-001

FrGrGroundControlRequest

class FrGrGroundControlRequest

This class finds a particular active or backup string in a string table based on the StringId.

Base Classes

public FrGrRequest

Public Construction

FrGrGroundControlRequest(const FrGrGroundControlRequest&)

This routine creates a duplicate of this class.

FrGrGroundControlRequest()

This routine creates an instance of this class.

~FrGrGroundControlRequest()

This routine deletes an instance of this class.

Private Data

EcTInt mySendFlag

This member variable identifies if the object needs to be forwarded to the RTS RMS.

EcTInt myStringID

This member variable identifies the logical string to which this request refers.

RWCString myUserID

This member variable identifies the user from whom this request originated.

RWCString myWksID

This member variable identifies the user station form which this request originated.

FrGrGroundScriptController

class FrGrGroundScriptController

This class is used to create, destroy, configure, and reconfigure the Ground Script Controller
process on the RTS.

Base Classes

public FrGrSoftware

Public Construction

FrGrGroundScriptController(const FrGrGroundScriptController&)

FrGrGroundScriptController(const FrGrGroundScriptController&)

This member function creates a duplicate of this class.

3-95 305-CD-043-001

FrGrGroundScriptController()

This member function is the default constructor for this class.

~FrGrGroundScriptController

This member function is the destructor for this class. It will call the
FrGrGroundScriptController::Stop() operation.

Public Functions

EcTInt Config()

This member function sends configuration information to the GroundScriptController
process after it has been started.

EcTInt Reconfig(EcTInt configparam)

Reconfig(EcTInt)

This member function will change a GroundScriptController configuration parameter that
is an EcTInt type.

EcTInt Reconfig(RWCString configparam)

Reconfig(RWCString)

This member function will change a GroundScriptController configuration parameter that
is a string type.

EcTInt Start()

This member function will create the GroundScriptController process and pass it the
configuration data.

Public Data

~FrGrGroundScriptController

This member function is the destructor for this class. It will call the
FrGrGroundScriptController::Stop() operation.

Protected Functions

EcTInt Stop(void)

This member function will terminate a GroundScriptController process.

Private Data

Address* myCmdAddress

This member variable identifies the command process that the GroundScriptController
process is associated with. It will be used as configuration data.

FuCcGscProxy* myGscProxy

This member variable points to the GroundScriptController Proxy.

3-96 305-CD-043-001

EcTInt myRtsId

This member variable identifies the RTS the GroundScriptController process is running on.
It will be used as configuration data.

EcTInt myStringId

This member variable identifies the String that the GroundScriptController process is
associated with. It will be used as configuration data.

Address* myTlmAddress

This member variable identifies the telemetry process that the GroundScriptController
process is associated with. It will be used as configuration data.

FrGrParameterServer

class FrGrParameterServer

This class is used to create and destruct an instance of the Parameter Server.

Public Construction

FrGrParameterServer(const FrGrParameterServer&)

FrGrParameterServer(const FrGrParameterServer&)

This member function creates a duplicate of this class.

FrGrParameterServer()

This member function is the default constructor for this class.

~FrGrParameterServer()

This member function is the destructor for this class.

Public Functions

EcTInt Start()

Start()

This member function will start a Parameter Server process.

EcTVoid Stop()

Stop()

This member function will stop a Parameter Server process.

Private Data

EcTInt myPsPid

This member variable is the process id of the this Parameter Server.

FrGrPriviledgeRequest

class FrGrPriviledgeRequest

This routine finds a particular active or backup string in a string table based on the StringID.

3-97 305-CD-043-001

Base Classes

public FrGrRequest

Public Construction

FrGrPriviledgeRequest(const FrGrPriviledgeRequest&)

This routine creates a duplicate of this class.

FrGrPriviledgeRequest()

This routine creates an instance of this class.

~FrGrPriviledgeRequest()

This routine deletes an instance of this class.

Private Data

EcTInt myStringID

This member variable identifies the logical string to which this request refers.

RWCString myUserID

This member variable identifies the users from whom this request originated.

RWCString myWksID

This member variable identifies the user station from which this request originated.

FrGrRTContact

class FrGrRTContact

This class is used to create, destroy, configure, and reconfigure the RCM subsystem. In
addition, it will take a configuration snapshot of the RCM subsystem.

Base Classes

public FrGrSoftware

Public Construction

FrGrRTContact(const FrGrRTContact&)

FrGrRTContact(const FrGrRTContact&)

This member function creates a duplicate of this class.

FrGrRTContact()

This member function is the default constructor for this class.

~FrGrRTContact()

This member function is the destructor for this class. It will call the FrGrRTContact::Stop()
operation.

3-98 305-CD-043-001

Public Functions

EcTInt ChangeState(State)

This member function will change the myState attribute of this class as well as send the
change to the RCM processes.

EcTInt Config(RWCString EoutFile, RWCString NoutFile)

Config(RWCString EoutFile, RWCString NoutFile)

This member function calls the MakeRmsAddress subroutines before calling the
StartRcmProcess() for the NoutMgr or EoutMgr process These operations will start and
configure the corresponding RCM processes.

EcTInt Config()

This member function calls the MakeRmsAddress subroutines before calling the
StartRcmProcess() for the NoutMgr, NinMgr,

EoutMgr or EinMgr process.

EcTInt Reconfig(RWCString configParam)

This member function will determine which RCM process will receive a configuration
parameter and call either the ReconfigRcmProcess() for

either the NoutMgr, NinMgr, EoutMgr or EinMgr process.

EcTInt Snap(void)

This member function will notify each RCM process to take a configuration snapshot of
their corresponding processes and update their mySnapFilename attribute.

EcTInt Stop(void)

This member function will call the StopRcmProcess() member

function for each RCM process.

Protected Functions

EctInt MakeRmsAddress()

This member function will set the myRmsAddress attribute which will be used to start the
RCM processes.

Private Data

FrGrRcmProcess* myEoutMgr

This member variable points to the EDOS output object.

FrGrRcmProcess* myNoutMgr

This member variable points to the NCC output object.

3-99 305-CD-043-001

FrGrRcmProcess

class FrGrRcmProcess

This class is used to create, destroy, configure, and reconfigure an RCM process. In addition,
it will take a configuration snapshot of the RCM process.

Public Construction

FrGrRcmProcess(const FrGrRcmProcess&)

FrGrRcmProcess(const FrGrRcmProcess&)

This member function creates a duplicate of this class.

FrGrRcmProcess(RWCString myDbid, RWCString myScid, myState, Address*
myRmsAddress)

This member function is the default constructor for this class.

~FrGrRcmProcess()

This member function is the destructor for this class.

Public Functions

EcTInt ConfigRcmProcess()

This member function sends configuration information to the Rcm process after it has been
started.

EcTInt ReconfigRcmProcess(RWCString configParam)

This member function sends a reconfiguration parameter to the Rcm process.

EcTInt SnapConfigRcmProcess(RWCString ConfigFile)

This member function sends snapshot configuration information to the Rcm process after
it has been started.

EcTInt SnapRcmProcess()

This member function requests a configuration snapshot of the Rcm process and updates
the mySnapFilename attribute.

EcTInt StartRcmProcess()

This member function will create the Rcm process.

Protected Functions

EcTInt StopRcmProcess()

This member function will terminate an Rcm process.

Private Data

FrGrDataArchiver* myDataArchiver

This member variable points to the associated FrGrDataArchiver object.

3-100 305-CD-043-001

RWCString myDbId

This member variable is the database identifier which is to be used by this process for the
extraction of database info.

FrGrRTContact* myFrGrRTContact

This member variable points to the FrGrRTContact object that this object is a part of.

RWCString myProcessName

This member variable identifies the Process Name. This can be the EoutMgr or the
NoutMgr.

EcTInt myRcmInPid

This member variable identifies the Process ID of the process that is started by either
NoutMgr or EoutMgr.

EcTInt myRcmPid

This member variable identifies the process Pid

Address* myRmsAddress

This member variable points to the address of the Rms process.

FoGnRmsRcmProxy* myRmsRcmProxy

This member variable points to the RMS/RCM proxy.

RWCString myScId

This member variable is the identifier of the space craft of which this process is supporting.

RWCString mySnapFilename

This member variable identifies a snapshot configuration filename.

FrGrRealtimeServiceRequest

class FrGrRealtimeServiceRequest

_FrGrRealtimeServiceRequest_h_

This class is responsible for processing a Realtime Service Request.

Base Classes

private FrGrServiceRequest

Public Construction

FrGrRealtimeServiceRequest(const FrGrRealtimeServiceRequest&)

This routine creates a duplicate of this class.

FrGrRealtimeServiceRequest()

This routine creates an instance of this class.

3-101 305-CD-043-001

~FrGrRealtimeServiceRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

EcTInt createGSC()

This routine is responsible for creation of the Ground Script Controller Object and
notification of the Ground Script Controller Object that it needs to configure a particular
Ground Script Controller process.

EcTInt createParamServer()

This routine is responsible for the creation of the Parameter Server Object.

EcTInt createRCM(FrGrStrManResMonIF* PassedStrManResMonIF)

createRcm

This routine is responsible for creation of the RTContact Object and notification of the
RTContact Object that it needs to configure a RCM Process. In addition, it notifies the
Resource Monitor Task of the new RCM Process.

FrGrString* findString(RWSet* PassedStringTable)

This routine finds a particular string in a string table based on the request attributes.

FrGrString* makeString()

This routine makes a particular string based on attributes of the request.

Private Data

RWCString myMode

This member variable is the identifier of the string's mode. This can be operational, test, or
training.

RWCString myMonitorRts

This member variable identifies the RTS that will monitor the RTS that receives this
request.

FrGrReplayRequestProxy

class FrGrReplayRequestProxy

This class enables an external subsystem to send all types of Requests to RMS.

Public Functions

EcTVoid GenReplayReq(RWCString Originator, RWCString ScId, RWCString DbId,

3-102 305-CD-043-001

RWCString RTSid, RWCString UserId, RWCString WksId, RWCString TlmType)

This member function will send a Replay Service Request to the RMS.

EcTVoid GenStrDelete(RWCString Originator, RWCString UserId, RWCString WksId,
EcTInt StringId)

This member function will send a String Delete Request to the RMS.

EcTInt Initialize()

This member function will establish a connection with the RMS subsystem.

Private Data

Address* myRmsAddress

This member variable identifies the Address of the RMS String Manager process.

XDR myXDR

This member variable identifies the XDR stream to which a message/object will be passed

FrGrReplayServiceRequest

class FrGrReplayServiceRequest

This class is responsible for identify strings via a string table based on request attributes and
StringID. This class also creates strings based on request attributes and creates Telemetry
object, notifying the Telemetry object of their configuration. BEGIN_PROLOG

Base Classes

private FrGrServiceRequest

Public Construction

FrGrReplayServiceRequest(const FrGrReplayServiceRequest&)

This routine creates a duplicate of this class.

FrGrReplayServiceRequest()

This routine creates an instance of this class.

~FrGrReplayServiceRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

3-103 305-CD-043-001

Protected Functions

EcTInt createParamServer()

This routine is responsible for creation of the Parameter Server object.

EcTInt createReplayTlm()

This routine is responsible for creation of the Telemetry Object(s) and notification of the
Telemetry Object(s) that it needs to configure a particular telemetry process.

FrGrString* makeString()

This routine makes a particular string based on attributes of the request.

Private Data

RWCString myDataType

Identifies type of data

FrGrRequest

class FrGrRequest

This class is a generalization of RMS requests.

Public Construction

FrGrRequest(const FrGrRequest&)

FrGrRequest(const FrGrRequest&)

This member function creates a duplicate of this class.

FrGrRequest()

This member function is the default constructor for this class.

~FrGrRequest()

This member function is the destructor for this class.

Public Functions

virtual int execute(FrGrController* Controller)

This member function is a pure virtual operation that ensures that all children of this object
will contain an execute operation.

Private Data

FrGrString* myCurrentString

This attribute points to the string associated with the request.

RWCString myOriginator

This attribute identifies the sender of the request.

3-104 305-CD-043-001

FrGrRequestHandler

class FrGrRequestHandler

This class will receive a message/object on an XDR stream and reconstruct the appropriate
object.

Public Construction

FrGrRequestHandler(const FrGrRequestHandler&)

FrGrRequestHandler(const FrGrRequestHandler&)

This member function creates a duplicate of this class.

FrGrRequestHandler()

This member function is the default constructor for this class.

~FrGrRequestHandler()

This member function is the destructor for this class.

Public Functions

FrGrRequest* CheckQueue()

This member function will return a Request object from the Queue.

EcTInt Initialize(FrGrController* Controller)

This member function will create a Queue for it's Requests. It will set it's address as well.

EcTInt receiveRequest(RWCollectable* newRequest)

This member function will receive a Request from FUI or ANALYSIS, instantiate a
FrGrRequest object, and put that Request in a Queue.

EcTInt sendStatus(RWCollectable* sentRequest)

This member function will send a status for the passed Request.

Private Data

FdEvEventLogger* myEventLogger

This member variable points to the FdEvEventLogger.

RWSet* myRequestQueue

This member variable points to the Queue that contains string requests.

FrGrRmsFuiRequestProxy

class FrGrRmsFuiRequestProxy

This class enables the FUI subsystem to send all types of Requests to RMS.

Public Functions

EcTVoid GenAdjustLimitReq(RWCString UserId, RWCString WksId, EcTInt StringId,

3-105 305-CD-043-001

EcTInt ParameterId, RWCString Type, EcTInt ParamValue, EcTInt TlmType,
EcTInt SetId)

This member function will send an Adjust Limit Request to the RMS.

EcTVoid GenBkupServReq(EcTInt StringId, EcTInt RTSid, RWCString UserId,
RWCString WksId)

This member function will send a Backup Service Request to the RMS.

EcTVoid GenCommandPriviledgeReq(RWCString UserId, RWCString WksId, EcTInt
StringId)

This member function will send a Command Priviledge Request to the RMS.

EcTVoid GenGroundControlPriviledgeReq(RWCString UserId, RWCString WksId,
EcTInt StringId)

This member function will send a Ground Control Priviledge Request to the RMS

EcTVoid GenRTServReq(RWCString ScId, RWCString DbId, RWCString RTSid,
RWCString Mode, RWCString UserId, RWCString WksId)

This member function will send a Realtime Service Request to the RMS.

EcTVoid GenSimulationServReq(EcTInt Mode, RWCString Scid, RWCString Dbid,
RWCString RTSid, RWCString UserId, RWCString WksId)

This member function will send a Simulation Service Request to the RMS.

EcTVoid GenStrDelete(RWCString UserId, RWCString WksId, EcTInt StringId)

This member function will send a String Delete Request to the RMS.

EcTVoid GenStringConnectReq(EcTInt StringId, RWCString UserId, RWCString WksId,
RWCString TlmType, RWCString myUserType)

This member function will send a String Connect Request to the RMS.

EcTVoid GenStringDisconnectReq(EcTInt StringId, RWCString UserId, RWCString
WksId)

This member function will send a String Disconnect Request to the RMS.

EcTVoid GenStringFailOverReq(RWCString UserId, RWCString WksId, EcTInt
FailedStringId, RWCString FailedRTSid, RWCString BackupRTSid, EcTInt
BackupStringId)

This member function will send a String Fail Over Request to the RMS.

EcTInt Initialize()

This member function will establish a connection with the RMS subsystem.

Private Data

Address* myRmsAddress

This member variable identifies the Address of the RMS String Manager process.

3-106 305-CD-043-001

XDR myXDR

This member variable identifies the XDR stream to which a message/object will be passed

FrGrRmsWsRmsIF

class FrGrRmsWsRmsIF

This class is used to receive messages from the WS/RTS RMS subsystem.

Public Construction

FrGrRmsWsRmsIF(const FrGrRmsWsRmsIF&)

FrGrRmsWsRmsIF(const FrGrRmsWsRmsIF&)

This member function creates a duplicate of this class.

FrGrRmsWsRmsIF()

This member function is the default constructor for this class.

~FrGrRmsWsRmsIF()

This member function is the destructor for this class.

Public Functions

FrGrRequest* CheckQueue()

This member function will return a Request object from the Queue.

EcTInt Initialize(FrGrController* Controller)

This member function will create a Queue for it's Requests and possibly one for the string
table updates. It will set it's address as well.

EcTInt receiveRequest(FrGrRequest* newRequest)

This member function will receive a Request from the WS/RTS RMS and put that Request
in a Queue.

EcTInt sendStatus(FrGrRequest* sentRequest)

This member function will send a status for the passed Request.

Private Data

FdEvEventLogger* myEventLogger

This member variable points to the FdEvEventLogger.

RWCString myHost

This member variable identifies whether or not the RMS is on the WS

or on the RTS.

RWSet* myRequestQueue

This member variable points to the Queue that contains string requests.

3-107 305-CD-043-001

Address* myRmsAddress

This member variable identifies the RMS Address of the RMS subsystem to which statuses
will be sent.

FrGrRtsRmsRequestProxy

class FrGrRtsRmsRequestProxy

This class enables a RTS RMS to send Requests to the WS RMS.

Public Functions

EcTInt Initialize(FrGrController* Controller)

This member function will set a multicast address and create an XDR stream.

EcTInt Multicast(FrGrRequest* Request)

This member function will receive a status on the passed Request.

EcTInt ReceiveStatus(FrGrRequest* Request)

This member function will receive a status on the passed Request.

EcTInt SendRequest(FrGrRequest* Request, Address* WsRmsAddress)

This member function will send a Request to the WS RMS.

Private Data

Address* myMulticastAddress

This member variable identifies the Multicast Address.

XDR myXDR

This member variable identifies the XDR stream to which a message/object will be passed

FrGrServiceRequest

class FrGrServiceRequest

This class creates and deletes instances of this class

Base Classes

public FrGrRequest

Public Construction

FrGrServiceRequest(const FrGrServiceRequest&)

This routine creates a duplicate of this class.

FrGrServiceRequest()

This routine creates an instance of this class.

3-108 305-CD-043-001

~FrGrServiceRequest()

This routine deletes an instance of this class.

Protected Functions

FrGrString* makeString()

makeString()

Private Data

RWCString myDBid

This member variable contains the database id

RWCString myRTSid

This member variable contains id of real-time server

RWCString myScid

This member variable contains the spacecraft id

RWCString myUserid

This member variable contains the id of the user

RWCString myWksid

This member variable contains the id of the Workstation

FrGrSimulationServiceRequest

class FrGrSimulationServiceRequest

_FrGrSimulationServiceRequest_h_

This class is responsible for processing a Simulation Service Request.

Base Classes

private FrGrServiceRequest

Public Construction

FrGrSimulationServiceRequest(const FrGrSimulationServiceRequest&)

This routine creates a duplicate of this class.

FrGrSimulationServiceRequest()

This routine creates an instance of this class.

~FrGrSimulationServiceRequest()

This routine deletes an instance of this class.

3-109 305-CD-043-001

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

EcTInt createGSC()

This routine is responsible for creation of the Ground Script Controller Object and
notification of the Ground Script Controller Object that it needs to configure a particular
Ground Script Controller process.

EcTInt createParamServer()

This routine is responsible for the creation of the Parameter Server Object.

FrGrString* findString(RWSet* PassedStringTable)

This routine finds a particular string in a string table based on the request attributes.

FrGrString* makeString()

This routine makes a particular string based on attributes of the request.

Private Data

RWCString myMode

This member variable is the identifier of the string's mode. This can be operational, test, or
training.

FrGrSnapshotCompNotif

class FrGrSnapshotCompNotif

This class is responsible for containing all functionality necessary for processing the Snapshot
Completion Notification.

Base Classes

public FrGrRequest

Public Construction

FrGrSnapshotCompNotif(const FrGrSnapshotCompNotif&)

This routine creates a duplicate of this class.

FrGrSnapshotCompNotif()

This routine creates an instance of this class.

~FrGrSnapshotCompNotif()

This routine deletes an instance of this class.

3-110 305-CD-043-001

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

FrGrString* findString(RWSet* PassedStringTable)

This routine finds a particular string in a string table based on the StringId.

Private Data

EcTInt myStringID

This member variable identifies the logical string for which this backup string is to be
created.

RWCString myTlmConfigFilename

This member variable identifies the configuration filename for the Telemetry process.

FrGrSoftware

class FrGrSoftware

This class is a virtual base class that contains the ScId, DbId, RMS address and the State of the
children.

Public Construction

FrGrSoftware(const FrGrSoftware&)

FrGrSoftware(const FrGrSoftware&)

This member function creates a duplicate of this class.

FrGrSoftware()

This member function is the default constructor for this class.

~FrGrSoftware()

This member function is the destructor for this class.

Protected Functions

EcTInt Stop()

This member function is pure virtual and makes this class abstract.

Private Data

RWCString myDbId

This member variable identifies the DbId that is used to configure the RMS configurable
processes.

3-111 305-CD-043-001

Address* myRmsAddress

This member variable identifies the address of the RMS process that the RMS configurable
processes will communicate with.

RWCString myScId

This member variable identifies the ScId that is used to configure the RMS configurable
processes.

Private Types

enum myState

This member variable identifies whether the RMS configurable processes are

in an active, inactive or a backup state. It is also used to configure
the RCM processes.

Enumerators

ACTIVE
BACKUP
INACTIVE

FrGrStrManResMonProxy

class FrGrStrManResMonProxy

This class enables a String Manager to send Requests to the Resource Monitor.

Public Functions

EcTInt Initialize(FrGrController* Controller)

This member function will establish a connection with the Resource Monitor.

EcTInt ReceiveStatus(FrGrMonitorRequest* Request)

This member function will receive a status on the passed Request.

EcTInt SendRequest(FrGrMonitorRequest* Request)

This member function will send a Request to the RTS RMS.

Private Data

Address* myResMonAddress

This member variable identifies the Address of the Resource Monitor

process.

XDR myXDR

This member variable identifies the XDR stream to which a message/object will be passed

3-112 305-CD-043-001

FrGrStringAccessRequest

class FrGrStringAccessRequest

This class finds a particular string in a string table based on the StringID.

Base Classes

public FrGrRequest

Public Construction

FrGrStringAccessRequest(const FrGrStringAccessRequest&)

FrGrStringAccessRequest(const FrGrStringAccessRequest&)

This routine creates a duplicate of this class.

FrGrStringAccessRequest()

This routine creates an instance of this class.

~FrGrStringAccessRequest()

This routine deletes an instance of this class.

Protected Functions

FrGrString* indString(RWSet* PassedStringTable, int PassedStringID)

findString

This routine finds a particular string in a string table based on the StringId.

Private Data

EcTInt myStringId

This member variable is the identifier of the string

RWCString myUserId

This member variable is the identifier of the user

EcTInt myWksId

This member variable is the identifier of the Workstation

FrGrStringConnectRequest

class FrGrStringConnectRequest

FrGrStringConnectRequest::FrGrStringConnectRequest()

This class is used to create a mirrored and tailored telemetry object, add a mirrored or tailored
workstation, or add a user to the user list.

3-113 305-CD-043-001

Base Classes

private FrGrStringAccessRequest

Public Construction

FrGrStringConnectRequest()

This routine creates an instance of this class.

~FrGrStringConnectRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(RWSet* passedStringTable, RWCString passedHostID,
FrGrStrManResMonIF* passedStrManResMonIF, FrGrRmsWsRmsIF*
passedFrGrRmsWsRmsIF, RWSet* passedFrGrRmsWsRmsIFset, FoGnRmsFuiIF*
passedFoGnRmsFuiIF, FoGnRmsCsmsIF* passedFoGnRmsCsmsIF)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

EcTInt addMirroredWS()

This routine adds a mirrored workstation to a string's mirrored WS list.

EcTInt addTailoredWS()

This routine adds a tailored workstation to a string's tailored WS list.

EcTInt addUser()

This routine adds a user to a string's user list.

EcTInt createParamServer()

This routine is responsible for creating a Parameter Server

EcTInt createTelemetry()

This routine is responsible for creating a telemetry object. In addition, it notifies the
telemetry object to create a telemetry process.

FrGrTelemetry* findTlm(RWCString passedTlmType)

This routine finds a particular telemetry object based on the passedTlmType

Private Types

enum myTlmType

This member variable identifies the telemetry type

3-114 305-CD-043-001

Enumerators

HEALTH
HOUSE_KEEPING

enum myUserType

This member variable identifies the type of user

Enumerators

MIRRORED
SHARED
TAILORED

FrGrStringDeleteRequest

class FrGrStringDeleteRequest

This class is responsible for processing a String Delete Request.

Base Classes

public FrGrRequest

Public Construction

FrGrStringDeleteRequest(const FrGrStringDeleteRequest&)

FrGrStringDeleteRequest(const FrGrStringDeleteRequest&)

This member function creates a duplicate of this class.

FrGrStringDeleteRequest()

This member function is the default constructor for this class.

~FrGrStringDeleteRequest()

This member function is the destructor for this class.

Public Functions

EcTInt execute(RWSet* passedStringTable, RWCString passedHostID,
FrGrStrManResMonIF* passedStrManResMonIF, FrGrRmsWsRmsIF*
passedFrGrRmsWsRmsIF, RWSet* passedFrGrRmsWsRmsIFset, FoGnRmsFuiIF*
passedFoGnRmsFuiIF, FoGnRmsCsmsIF* passedFoGnRmsCsmsIF)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

int deleteCmd(FrGrStrManResMonIF* StrManResMonIF)

This routine will delete the command object associated with a string. The software object
destruction will also delete the command process it is associated with. If necessary, it will

3-115 305-CD-043-001

notify the Resource Monitor Task to stop monitoring the process.

int deleteGsc(FrGrStrManResMonIF* StrManResMonIF)

This routine will delete the Ground Script Controller

object associated with a string.

The software object destruction will also delete the GSC process it is associated with. It
will notify the Resource Monitor Task to stop monitoring the process.

int deleteParamServer(RWCString Host, FrGrStrManResMonIF* StrManResMonIF)

This routine will delete the Parameter Server

object associated with a string.

The software object destruction will also delete the PS process it is associated with. If
necessary, it will notify the Resource Monitor Task to stop monitoring the process.

int deleteRcm(FrGrStrManResMonIF* StrManResMonIF)

This routine will delete the RTContact object associated with a string. The software object
destruction will also delete the RTContact process it is associated with. If necessary, it will
notify the Resource Monitor Task to stop monitoring the process.

int deleteTlm(RWCString Host, FrGrStrManResMonIF* StrManResMonIF)

This routine will delete any telemetry objects associated with a string. The software object
destruction will also delete the telemetry processes they are associated with. If necessary,
it will notify the Resource Monitor Task to stop monitoring the process.

FrGrString* findString(RWSet* PassedStringTable, int PassedStringID)

This routine finds a particular string in a string table based on the StringId.

int removeAll(FrGrStrManResMonIF* PassedStrManResMonIF, RWCString
PassedHostId)

This routine will call the necessary subroutines for deleting software objects and processes.

int removeString(RWSet* PassedStringTable)

This routine will remove a string from the PassedStringTable.

Private Data

EcTInt myStringId

This attribute identifies the string to be deleted.

RWCString myUserId

This attribute identifies the user that generated the request.

RWCString myWksId

This attribute identifies the workstation that generated the request.

3-116 305-CD-043-001

FrGrStringDisconnectRequest

class FrGrStringDisconnectRequest

FrGrStringDisconnectRequest::FrGrStringDisconnectRequest()

This class is used to delete a mirrored and tailored telemetry object, delete a mirrored or
tailored workstation, or delete a user from the user list.

Base Classes

private FrGrStringAccessRequest

Public Construction

FrGrStringDisconnectRequest()

This routine creates an instance of this class.

~FrGrStringDisconnectRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for containing all functionality necessary for processing the
request. It calls additional subroutines in order to accomplish this task.

Protected Functions

EcTInt removeAllTlm(RWCString passedTlmType)

This routine removes all telemetry processes associated with a

particular string off of a workstation.

EcTInt removeParamServer()

This routine removes the Parameter Server process associated with a particular string off
of a workstation.

EcTInt removeUser()

This routine removes the UserId from a string's UserId list.

EcTInt removeUserStation()

This routine removes the WksId from a string's UserStation list.

FrGrStringFailoverRequest

class FrGrStringFailoverRequest

This class is responsible for processing a String Failover Request.

3-117 305-CD-043-001

Base Classes

public FrGrRequest

Public Construction

FrGrStringFailoverRequest(const FrGrServiceRequest&)

This routine creates a duplicate of this class.

FrGrStringFailoverRequest()

This routine creates an instance of this class.

~FrGrStringFailoverRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This member function is responsible for processing this particular request.

Protected Functions

EcTInt DeactivateTelemetry()

This member function will initiate changing Telemetry's state from active to backup.

EcTInt activateCommand()

This member function will initiate changing Command's state from backup to active.

EcTInt activateRTContact()

This member function will initiate changing RTContact's state from backup to active.

EcTInt activateTelemetry()

This member function will initiate changing Telemetry's state from backup to active.

EcTInt deactivateCommand()

This member function will initiate changing Command's state from active to backup.

EcTInt deactivateRTContact()

This member function will initiate changing RTContact's state from active to backup.

FrGrString* findString(FrGrStringTable* PassedStringTable, int PassedStringID)

This member function will find a particular string within the string table based on its string
ID.

FrGrTelemetry* findTlm(RWCString passedTlmType)

This member function will find a FrGrTelemetry object based on its type.

3-118 305-CD-043-001

Private Data

RWCString myActionFlag

This member variable identifies whether the RTS needs to Activate or deactivate processes.

EcTInt myBackupRTSid

This member variable contains the RTSid to be failed over to.

EcTInt myBackupStringId

This member variable identifies the backup string to be failed over to.

EcTInt myFailedRTSid

This member variable contains the RTSid to be failed over from.

EcTInt myFailedStringId

This member variable identifies the failed string to be failed over from.

RWCString myUserid

This member variable contains the id of the user

RWCString myWksid

This member variable contains the id of the Workstation

FrGrStringStateUpdateRequest

class FrGrStringStateUpdateRequest

This class updates a string's state when its RTS fails.

Base Classes

public FrGrRequest

Public Construction

FrGrStringStateUpdateRequest(const FrGrStringStateUpdateRequest&)

FrGrStringStateUpdateRequest(const FrGrStringStateUpdateRequest&)

This routine creates a duplicate of this class.

FrGrStringStateUpdateRequest()

This routine creates an instance of this class.

~FrGrStringStateUpdateRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for processing this request

3-119 305-CD-043-001

FrGrString* findString(RWSet* PassedStringTable, int PassedStringID)

This routine will find a string from the PassedStringTable

Private Data

RWCString myNewState

This member variable identifies the new state of the string.

EcTInt myStringId

This member variable identifies the string that will be updated with the new state.

FrGrTableUpdateRequest

class FrGrTableUpdateRequest

This class updates the String Table with the String Table subset.

Base Classes

public FrGrRequest

Public Construction

FrGrTableUpdateRequest(const FrGrTableUpdateRequest&)

FrGrTableUpdateRequest(const FrGrTableUpdateRequest&)

This routine creates a duplicate of this class.

FrGrTableUpdateRequest()

This routine creates an instance of this class.

~FrGrTableUpdateRequest()

This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

This routine is responsible for processing this request

Private Data

RWSet myTableSubset

This member variable points to the string table subset that the WS String Table will be
updated with.

FrGrTelemetry

class FrGrTelemetry

This class is used to create, destroy, configure and reconfigure the telemetry (TLM) subsystem.
In addition, it will take a configuration snapshot of the TLM subsystem.

3-120 305-CD-043-001

Base Classes

public FrGrSoftware

Public Construction

FrGrTelemetry(const FrGrTelemetry&)

This member function is a "copy constructor", it creates a duplicate of this class.

FrGrTelemetry(EcTInt TlmType)

FrGrTelemetry(RWCString TlmType)

This member function is the default constructor for this class.

FrGrTelemetry()

This member function is the default constructor for this class.

~FrGrTelemetry()

This member function is the destructor for this class. It will call the FrGrTelemetry::Stop()
member function.

Public Functions

EcTInt ChangeState(State)

This member function will change the myState attribute of this class as well as send the
change to the TLM processes.

EcTInt Config(RWCString DiagnosticFile, RWCString HKDecommFile, RWCString
HSDecommFile, RWCString SBDecommFile)

Config(RWCString DiagnosticFile, RWCString HKDecommFile,

RWCString HSDecommFile, RWCString SBDecommFile)

This member function calls the MakeRmsAddress subroutine before calling the TLM
StartTlmProcess() These operations will start and configure the corresponding TLM
processes.

void Config(void)

This member function calls the MakeRmsAddress member function before calling TLM
StartTlmProcess() These operations will start and configure the corresponding TLM
processes.

EcTInt Reconfig(RWCString configParameters)

This member function will determine which TLM process will receive a configuration
parameter and call the appropriate TLM ReconfigTlmProcess(RWCString configParam)
member function

EcTInt Snap(void)

This member function will notify one of the TLM processes to take a configuration
snapshot of their corresponding processes and update their mySnapFilename attribute.

3-121 305-CD-043-001

EcTInt Stop(void)

This member function will call FrGrDiagnostic::StopDiagnostic()

Protected Functions

EcTInt MakeRmsAddress(void)

This member function will set the myRmsAddress attribute which

will be used to start the TLM processes.

Private Data

FrGrTelemetryProcess* myDiagnostic

This member variable points to the Diagnostic object.

Address* myDmsAddress

This member variable identifies the address of the DMS process that the TLM processes
will communicate with.

FrGrTelemetryProcess* myHKDecomm

This member variable points to the HK Decomm object.

FrGrTelemetryProcess* myHSDecomm

This member variable points to the HS Decomm object.

FrGrTelemetryProcess* mySBDecomm

This member variable points to the SB Decomm object.

FrGrTelemetryProcess* myStateCheck

This member variable points to the State Check process object.

EcTInt myTlmType

This member variable contains the type of telemetry process is being executed.

FrGrTelemetryProcess

class FrGrTelemetryProcess

This class us used to create, destroy, configure and reconfigure any of the potential telemetry
processes, i.e. Dump, StandBy, Housekeeping or Health & Safety. It will also take a
configuration snapshot of any of the aforementioned processes.

Base Classes

public FrGrTelemetry

Public Construction

FrGrTelemetryProcess(const FrGrTelemetryProcess&)

This member function is a "copy constructor", it creates a duplicate of this class.

3-122 305-CD-043-001

FrGrTelemetryProcess(RWCString myDbid, RWCString myScid, myState, Address*
myRmsAddress)

This member function is the default constructor for this class.

~FrGrTelemetryProcess()

This member function is the destructor for this class. It will call the
FrGrTelemetryProcess::StopTlmProcess() member function.

Public Functions

EcTInt ConfigTlmProcess()

This member function sends configuration information to the FrGrTelemetryProcess
process after it has been started.

EcTInt ReconfigTlmProcess(RWCString configParameter)

This member function sends a reconfiguration parameter to the specified telemetry process.

EcTInt SnapConfigTlmProcess(RWCString ConfigFile)

This member function sends snapshot configuration information to a telemetry process
after it has been started.

EcTInt SnapTlmProcess(void)

This member function requests a configuration snapshot of the FrGrTelemetyProcess
process and updates the mySnapFilename attribute.

EcTInt StartTlmProcess()

This member function will create a telemetry process of one of the following telemetry
types: Dump, StandBy, Housekeeping or Health & Safety.

Protected Functions

EcTInt StopTlmProcess(void)

This member function will terminate a FrGrTelemetryProcess process.

Private Data

FrGrDataArchiver* myDataArchiver

This member variable points to the FrGrDataArchiver object

RWCString myDbId

This member variable is the database identifier which is to be used by this process for the
extraction of database information.

FtTlDumpConfig* myDumpConfig

This member variable points to the Telemetry Dump Proxy.

FrGrTelemetry* myFrGrTelemetry

This member variable points to the FrGrTelemetry object that this object is part of.

3-123 305-CD-043-001

RWCString myProcessType

This member variable identifies whether the Telemetry Process is to process
Housekeeping, Health&Safety, Standby, Diagnostic, or State Checking.

Address* myRmsAddress

This member variable points to the address of the RMS address.

RWCString myScId

This member variable is the identifier of the space craft of which this process is supporting.

RWCString mySnapFilename

This member variable identifies a snapshot configuration filename.

FtTlTelemetryConfig* myTelemetryConfig

This member variable points to the Telemetry proxy.

EcTInt myTlmPid

This member variable identifies the telemetry processes, Pid

FrGrWsRmsRequestProxy

class FrGrWsRmsRequestProxy

This class enables a WS RMS to send Requests to the RTS RMS.

Public Functions

EcTInt Initialize(FrGrController* Controller, RWCString RtsId)

This member function will establish a connection with the RTS RMS subsystem. It will
create a Request Queue as well.

EcTInt ReceiveStatus(FrGrRequest* Request)

This member function will receive a status on the passed Request.

EcTInt SendRequest(FrGrRequest* Request)

This member function will send a Request to the RTS RMS.

Private Data

Address* myRtsRmsAddress

This member variable identifies the Address of the RTS RMS String Manager process.

XDR myXDR
This member variable identifies the XDR stream to which a message/object will be passed

3.3 RMS Resource Monitor Component
The Resource Monitor Component provides the Resource Management Subsystem's monitoring
service for critical EOC resources. The Resource Management Subsystem Resource Monitor
Component is designed to be installed and executed only on the Real-Time Servers within the

3-124 305-CD-043-001

EOC. The role of the Resource Monitor is much the same from server to server and is dependent
upon requests from the String Manager component that is co-located.

3.3.1 RMS Resource Monitor Component Context

The RMS Resource Monitor Component receives and responds to requests for hardware and
software component monitoring from the RMS String Manager Component. The requests are for
starting, stopping and modifying the monitoring from one component to another as the mission
critical components change with the operating environment. As these operating conditions change
(e.g. logical strings are created and deleted) and are reported by the String Manager, the changes
in monitoring needs are relayed to the CSMS/MSS monitoring service by the Resource Monitor.
The Resource Monitor registers interests in newly created software components and terminates
interests in deleted software components. Hardware components are monitored automatically by
CSMS/MSS.

Receiving notice of changed hardware and software component status's is more complex. When
the status of a mission critical hardware or software component changes, a management event is
generated by the CSMS/MSS Monitoring Service. The event is reported to the Data Management
Subsystem where it is determined that the incoming event is of a type that the RMS Resource
Monitor is interested. The DMS uses a Paramater Server interface class to translate the event
information into a component status and report that status to the Parmeter Server. Interest in
certain hardware and software status parameters is registered by the Resource Monitor process.
Again, this depends on which hardware and software components are considered mission critical
at a given time. When a failure status is received by the Resource Monitor process an event
indicating a mission critical component failure will be generated.

3-125
305-C

D
-043-001

FrGrStrManResMonIF

FrGrMonitorController

FrGrResourceMonitor

FoGnCsmsIF

RWSet

FrGrHardwareMonitor FrGrSoftwareMonitor

FrGrRtsMonitor
FrGrUsMonitor

RWSet

FrGrMonitorRequest

see Figures 3.3.3-2,3

myHwMonitorSet

mySwMonitorSet

myHwId

myStringId
myRole

FdEvEventLogger

RWSet

myPid
myStringId
mySwSubsystemName

ParameterMonitor

UserParameter
myStatus

GetStatus()
RWSet

FrGrStrManResMonProxy

Request Queue

myEventLogger
myRequestQueue
myStrManAddress

Initialize(FrGrController* Controller)
CheckQueue()
ReceiveRequest(FrGrMonitorRequest* newRequest)
SendStatus(FrGrMonitorRequest* sentRequest)

myXDR
myResMonAddress

Initialize(FrGrController* Controller)
SendRequest(FrGrMonitorRequest* Request)
ReceiveStatus(FrGrMonitorRequest* Request)

FoPsClientIF

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)

UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

myParameters
mySCID

ParameterMonitor()
~ParameterMonitor()
Init()
RegisterParameters(Container *)
RegisterParameter(Parameter)
DeleteParameters(Container *)
DeleteParameter(Parameter)
DeleteAllParameters()
DoAllSamples()
GetCurrentValue(Parameter)
FindParameter(Parameter)
CalculateParameterTime()

GenEvent(RWCString* msg)

myNameServer
myEcsSecurity
mySoftwareRegister

UnregisterSw(EcTInt Pid)
RegisterSw(EcTInt Pid)
CheckUserAuthorization(RWCString UserId, RWCString Role)
CheckHwAuthorization(RWCString HwId, RWCString Role)
QueryRole()
CountRts()

myCurrentRequest
myHwMonitorSet
mySwMonitorSet
myFoGnCsmsIF
myFrGrStrManResMonIF
myParameterMonitor
myHwMonitor
mySwMonitor
myFdEvEventLogger

Initialize()
Run()
ReceiveStatus(UserParameter* Status)
ReceiveRequest(FrGrMonitorRequest* receivedRequest)
CreateFoGnCsmsIF()
CreateHwMonitorSet()
CreateSwMonitorSet()
FindHwMonitor(EcTInt hwId)
FindSwMonitor(EcTInt pid)
CreateFrGrStrManResMonIF()
CreateParameterMonitor()
CreateFrGrRtsMonitors()
CreateFdEvEventLogger()

e

e

 - : RWCString

 - : RWCString
 - : RWCString

e

 - : EcTInt
 - : RWCString
 - : RWCString

 - : UserParameter*

 + : RWCStringe

 - : FdEvEventLogger*
 - : RWSet*
 - : Address*

 + : EcTInt
 + : FrGrMonitorRequest*
 + : EcTInt
 + : EcTInt

 - : XDR
 - : Address*

 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : RWCString
 - : RWHashDictionary

 + : EcTInt

 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : Container *
 - : String

 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

 - : Directory_Naming_Service*
 - : ECSSecurity*
 - : SoftwareRegister*

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : RWCString
 + : EcTInt

 - : FrGrMonitorRequest*
 - : RWSet*
 - : RWSet*
 - : FoGnCsmsIF*
 - : FrGrStrManResMonIF*
 - : ParameterMonitor*
 - : FrGrHardwareMonitor*
 - : FrGrSoftwareMonitor*
 - : FdEvEventLogger*

 + : EcTInt
 + : EcTInt
 + : EcTInt

± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : FrGrHardwareMonitor*
 ± : FrGrSoftwareMonitor*
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt

ChecksStatusIn

creates

used by

created by

created by

creates

creates

iterates over

iterated over by
received by

creates

Updates

Adds
Parameters

To

Monitors

notified by

updates

sends

Figure 3.3.1-1. RMS Resource Monitor Component Context Diagram

3-126 305-CD-043-001

3.3.2 RMS Resource Monitor Component Interfaces

3.3.3 RMS Resource Monitor Component Object Model

Figure 3.3.3-1 illustrates a top level view of the RMS Resource Monitor Component. Subsequent
Figures illustrate, in more detail, the FrGrMonitorRequest object. The objects shown on Figure
3.3.3-1 allow the RMS to collect status on software and hardware, register software with the CSMS
name server, and generate events when a failure status is received.

The RWSet object is a Rogue Wave Collection Class that is used to store other RMS Resource
Monitor objects. This includes Hardware and Software Monitor objects, User Parameter objects,
and Monitor Request objects.

There are several "proxy" and "receiver" objects that appear on the diagram. The
FrGrStrManResMonProxy object appears on the diagram for clarity. It resides in the RMS String
Manager process and enables the String Manager to send MonitorRequests to Resource Monitor.
The MonitorRequests are received by the FrGrStrManResMonIF object and placed into a queue.
The queue is represented by a RWSet. When the Controller object invokes CheckQueue within
the FrGrStrManResMonProxy, it retrieves a MonitorRequest object from the queue and returns it
to the Controller. The FrGrStrManResMonIF will send a request status back to the String Manager
when notified by the Controller. The FdEvEventLogger enables the Resource Monitor to send

Table 3.3.2 RMS Resource Monitor Component Interfaces

Interface Service Interface
Class

Interface Class
Description

Service Provider Service
User

Frequency

RTS RMS to
Resource Monitor
Interface

FrGrStr
ManRes
MonProxy

Enables the RTS
RMS to send
requests to
Resource
Monitor

RMS
Resource
Monitor

 RTS
 RMS

30 - 100 per
contact

Un/Registering of
SW and querying
the name server

FoGnCsms
IF

Enables RMS to
interface with the
name server CSMS RMS

24 - 80 per
contact

Gets and Sets
parameters from/
to PS

FoPsClient
IF

Enables RMS to
interface with PS PS RMS

30 - 100 per
contact

Reads requests
sent by the RMS
String Mgr.

FrGrStr
ManRes
MonIF

Enables the
RMS Resource
Monitor to read
requests from
the String Mgr.

 RMS RMS
 Resource
 Monitor

30 - 100 per
contact

Sends event
messages to
event logger

FdEvEventL
ogger

Enables RMS to
log event
messages

 DMS RMS
1 per SW or
HW failure

3-127 305-CD-043-001

events to DMS. The FoGnCsmsIF object enables the Resource Monitor to register and unregister
software processes with the CSMS name server. The FoPsClientIF allows the Resource Monitor
to receive status information on hardware and software from the Parameter Server.

There are three types of Monitors within the Resource Monitor. The FrGrRtsMonitor is derived
from the FrGrHardwareMonitor and stores the status of the RTS. The FrGrUsMonitor is derived
from the FrGrHardwareMonitor and stores the status of the userstations. In addition, it tracks the
string associated with a userstation and what type of role the userstation plays within the EOC. The
role could be Ground Control or Command Authority. The FrGrSoftwareMonitor is derived from
the FrGrResourceMonitor and stores a Process ID, the ID of the String that the process belongs to,
and a Software Subsystem Name. The Software Subsystem Name could be Telemetry, Command,
RTContact, Ground Script Controller, Parameter Server, or Data Archiver. The
FrGrHardwareMonitor object is derived from the FrGrResourceMonitor object and merely serves
as a generalization of the FrGrRtsMonitor and the FrGrUsMonitor. It is an abstract class that only
contains a HwId as an attribute. The FrGrResourceMonitor is an abstract class that serves as a
generalization of all of the Monitor objects needed by the Resource Monitor.

The FrGrMonitorRequest object is an abstract class that contains a virtual Execute operation.
Several Request objects are derived from the FrGrMonitorRequest object and each will overwrite
the Execute operation. The Execute operation is called by the FrGrMonitorController object and
is responsible for containing all functionality or calling any subroutines necessary for processing a
particular request. The classes derived from the FrGrMonitorRequest object are shown in more
detail in Figure 3.3.3-2 and Figure 3.3.3-3.

The ParameterMonitor object receives User Parameters through the FoPsClientIF and notifies the
FrGrMonitorController of a change in the Parameter's value.

The FrGrMonitorController object enables the Resource Monitor to initialize itself, communicate
with other processes, and initiate the processing of requests. At initialization, the
FrGrMonitorController creates the appropriate "proxy" and "receiver" objects. In addition, it
creates collection classes and FrGrRtsMonitor objects for every RTS, except for the RTS that this
particular Resource Monitor resides on. Once the Controller has initialized, it enters a "run" state.
In this state, the Controller will notify requests to execute as they are received from the String
Manager. When a failure status is received from the Parameter Server, an event is sent to DMS.

3-128
305-C

D
-043-001

FrGrStrManResMonIF

FrGrMonitorController

FrGrResourceMonitor

FoGnCsmsIF

RWSet

FrGrHardwareMonitor FrGrSoftwareMonitor

FrGrRtsMonitor
FrGrUsMonitor

RWSet

FrGrMonitorRequest

see Figures 3.3.3-2,3

myHwMonitorSet

mySwMonitorSet

myHwId

myStringId
myRole

FdEvEventLogger

RWSet

myPid
myStringId
mySwSubsystemName

ParameterMonitor

UserParameter
myStatus

GetStatus()
RWSet

FrGrStrManResMonProxy

Request Queue

myEventLogger
myRequestQueue
myStrManAddress

Initialize(FrGrController* Controller)
CheckQueue()
ReceiveRequest(FrGrMonitorRequest* newRequest)
SendStatus(FrGrMonitorRequest* sentRequest)

myXDR
myResMonAddress

Initialize(FrGrController* Controller)
SendRequest(FrGrMonitorRequest* Request)
ReceiveStatus(FrGrMonitorRequest* Request)

FoPsClientIF

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)

UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

myParameters
mySCID

ParameterMonitor()
~ParameterMonitor()
Init()
RegisterParameters(Container *)
RegisterParameter(Parameter)
DeleteParameters(Container *)
DeleteParameter(Parameter)
DeleteAllParameters()
DoAllSamples()
GetCurrentValue(Parameter)
FindParameter(Parameter)
CalculateParameterTime()

GenEvent(RWCString* msg)

myNameServer
myEcsSecurity
mySoftwareRegister

UnregisterSw(EcTInt Pid)
RegisterSw(EcTInt Pid)
CheckUserAuthorization(RWCString UserId, RWCString Role)
CheckHwAuthorization(RWCString HwId, RWCString Role)
QueryRole()
CountRts()

myCurrentRequest
myHwMonitorSet
mySwMonitorSet
myFoGnCsmsIF
myFrGrStrManResMonIF
myParameterMonitor
myHwMonitor
mySwMonitor
myFdEvEventLogger

Initialize()
Run()
ReceiveStatus(UserParameter* Status)
ReceiveRequest(FrGrMonitorRequest* receivedRequest)
CreateFoGnCsmsIF()
CreateHwMonitorSet()
CreateSwMonitorSet()
FindHwMonitor(EcTInt hwId)
FindSwMonitor(EcTInt pid)
CreateFrGrStrManResMonIF()
CreateParameterMonitor()
CreateFrGrRtsMonitors()
CreateFdEvEventLogger()

e

e

 - : RWCString

 - : RWCString
 - : RWCString

e

 - : EcTInt
 - : RWCString
 - : RWCString

 - : UserParameter*

 + : RWCStringe

 - : FdEvEventLogger*
 - : RWSet*
 - : Address*

 + : EcTInt
 + : FrGrMonitorRequest*
 + : EcTInt
 + : EcTInt

 - : XDR
 - : Address*

 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : RWCString
 - : RWHashDictionary

 + : EcTInt

 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : Container *
 - : String

 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

 - : Directory_Naming_Service*
 - : ECSSecurity*
 - : SoftwareRegister*

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : RWCString
 + : EcTInt

 - : FrGrMonitorRequest*
 - : RWSet*
 - : RWSet*
 - : FoGnCsmsIF*
 - : FrGrStrManResMonIF*
 - : ParameterMonitor*
 - : FrGrHardwareMonitor*
 - : FrGrSoftwareMonitor*
 - : FdEvEventLogger*

 + : EcTInt
 + : EcTInt
 + : EcTInt

± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : FrGrHardwareMonitor*
 ± : FrGrSoftwareMonitor*
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt

ChecksStatusIn

creates

used by

created by

created by

creates

creates

iterates over

iterated over by
received by

creates

Updates

Adds
Parameters

To

Monitors

notified by

updates

sends

Figure 3.3.3-1. RMS Resource Monitor Component Object Model

3-129
305-C

D
-043-001

FrGrMonitorRequest

FrGrMonitorUsRequest

FrGrSwitchMonitorUsRequest

FrGrStopMonitorUsRequest

Execute(FrGrMonitorController* Controller)

FrGrUsMonitorRequest

myNewHwId
myRole
myStringId

Execute(FrGrController* Controller)

DeleteUsMonitor()
Execute(FrGrMonitorController* Controller)

myStringId
myRole

CreateUsMonitor()
Execute(FrGrMonitorController* Controller)

myHwId
myUsMonitor

FindUsMonitor(FrGrMonitorController* PassedController)

 + : EcTInt

 - : RWCString
 - : RWCString
 - : RWCString

 + : EcTInt

± : EcTInt
 + : EcTInt

 - : RWCString
 - : RWCString

 ± : FrGrUsMonitor*
 + : EcTInt

 - : RWCString
 - : FrGrUsMonitor*

 ± : FrGrUsMonitor*

Figure 3.3.3-2. RMS Resource Monitor Component FrGrUsMonitorRequest Object Model

3-130 305-CD-043-001

The FrGrUsMonitorRequest object is derived from the FrGrMonitorRequest object.
FrGrMonitorRequest is an abstract class that contains an Execute operation that derived classes
will inherit. FrGrUsMonitorRequest contains additional attributes and a FindUsMonitor operation
that derived objects will inherit. The FrGrStopMonitorUsRequest object contains attributes and
operations necessary for terminating the monitoring of a userstation. It will delete the
FrGrUsMonitor object as well as notify the Parameter Server that there is no longer an interest in
the userstation status. This would occur when a string is deleted from the RTS. The
FrGrMonitorUsRequest object contains attributes and operations necessary for initiating the
monitoring of a userstation. It will create the FrGrUsMonitor object as well as notify the Parameter
Server that there an interest in the userstation status. This would occur when a string is created on
the RTS. The FrGrSwitchMonitorUsRequest contains attributes and operations necessary to
terminate the monitoring of one userstation and initiate the monitoring of another. It uses a
FrGrUsMonitor object that has been already created, notifies the Parameter Server that there is no
longer an interest in a particular userstation, and notifies it of a new interest in a different
userstation. This would occur when the Ground Control or Command Authority user changes.

The FrGrSwMonitorRequest object is derived from the FrGrMonitorRequest object.
FrGrMonitorRequest is an abstract class that contains an Execute operation that derived classes
will inherit. FrGrSwMonitorRequest contains additional attributes that derived objects will inherit.
The FrGrStopMonitorSwRequest object contains operations necessary for terminating the
monitoring of a software process. It will delete the FrGrSoftwareMonitor object, notify the
Parameter Server that there is no longer an interest in the software status, and notify CSMS to
discontinue monitoring of the software process. This can occur when a string is deleted from the
RTS. The FrGrMonitorSwRequest object contains attributes and operations necessary for
initiating the monitoring of a software process. It will create the FrGrSoftwareMonitor object,
notify the Parameter Server that there is an interest in the software status, and notify CSMS to begin
monitoring the software process. This can occur when a string is created.

 3.3.4 RMS Resource Monitor Component Dynamic Model

The following are the RMS Resource Monitor Component scenarios which are defined in this
section.

• Request for Software Monitoring is Received by the Resource Monitor

• Request for User Station Monitoring is Received by the Resource Monitor

• Request to Switch User Station Monitoring is Received by the Resource Monitor

• Failed Hardware Status from the Parameter Server is Received by the Resource Monitor

3.3.4.1 Request for Software Monitoring is Received by the Resource Monitor
Scenario

3.3.4.1.1 Request for Software Monitoring is Received by the Resource Monitor
Abstract

The purpose of the Request for Software Monitoring is Received by the Resource Monitor scenario
is to describe how the RMS Resource Monitor component acts upon a request for a software
process to be monitored by the SCDO MSS Monitoring Service.

3-131
305-C

D
-043-001

FrGrSwMonitorRequest

FrGrStopMonitorSwRequest FrGrMonitorSwRequest

FrGrMonitorRequest

Execute(FrGrMonitorController* Controller)

myStringId
mySwMonitor
myPid

mySwSubName
myStringId

FindSwMonitor(FrGrMonitorController* PassedController)
CreateSwMonitor()
Execute(FrGrMonitorController* Controller)

DeleteSwMonitor(FrGrMonitorController* PassedController)
FindSwMonitor(FrGrMonitorController* PassedController)
Execute(FrGrMonitorController* Controller)

 + : EcTInt

 - : RWCString
 - : FrGrSoftwareMonitor*
 - : EcTInt

 - : RWCString
 - : RWCString

± : FrGrSoftwareMonitor*
 ± : FrGrSoftwareMonitor*
 + : EcTInt

 ± : EcTInt
 ± : FrGrSoftwareMonitor*
 + : EcTInt

Figure 3.3.3-3. RMS Resource Monitor Component FrGrSwMonitorRequest Object Model

3-132 305-CD-043-001

3.3.4.1.2 Request for Software Monitoring is Received by the Resource Monitor
Summary Information

Interfaces:

SCDO/MSS Monitoring Service

Parameter Server

Stimulus:

The String Manager sends a FrGrMonitorSwRequest object to the Resource Monitor for
processing.

Desired Response:

CSMS will be notified of a new software process to monitor and the Parameter Server will be
notified to begin sending the Resource Monitor a status on the software process.

Pre-Conditions:

A software process has been created by the String Manager.

Post-Conditions:

The Resource Monitor is capable of receiving a software status from the Parameter Server and
send an event if a software failure occurs.

3.3.4.1.3 Scenario Description

The Controller checks the queue of the FrGrStrManResMonIF and a FrGrMonitorSwRequest is
returned. The MonitorController invokes the FrGrMonitorSwRequest object's Execute operation.
A SwMonitor search is performed and a FrGrSoftwareMonitor object is not found. A
FrGrSoftwareMonitor object is created and added to the SwMonitorSet. MSS is notified of the
new software process and the Parameter Server is notified to send Resource Monitor the status of
the new process. The Request is deleted and the String Manager is notified that the Request has
been executed.

3.3.4.1.4 State Transition Description

3.3.4.2 Request for User Station Monitoring is Received by the Resource Monitor
Scenario

3.3.4.2.1 Request for User Station Monitoring is Received by the Resource Monitor
Abstract

The purpose of the Request for User Station Monitoring is Received by the Resource Monitor
scenario is to describe how the RMS Resource Monitor component acts upon a request for a
particular User Workstation to be monitored by the SCDO MSS Monitoring Service.

3-133 305-CD-043-001

3.3.4.2.2 Request for User Station Monitoring is Received by the Resource Monitor
Summary Information

Interfaces:

Parameter Server

Stimulus:

The String Manager grants Command Authority and sends a FrGrMonitorUsRequest to the
Resource Monitor for processing.

Desired Response:

The Parameter Server will be notified to begin sending the Resource Monitor a status on the
user station.

Pre-Conditions:

Command Authority has been granted on a particular userstation

Post-Conditions:

The Resource Monitor is capable of receiving a hardware status from the Parameter Server and
send an event if a userstation failure occurs.

3.3.4.2.3 Scenario Description

The Controller checks the queue of the FrGrStrManResMonIF and a FrGrMonitorUsRequest is
returned. The MonitorController invokes the FrGrMonitorUsRequest object's Execute operation.
A UsMonitor search is performed and a FrGrUsMonitor object is not found. A FrGrUsMonitor
object is created and added to the HwMonitorSet. The Parameter Server is notified to send
Resource Monitor the status of the user station. The Request is deleted and the String Manager is
notified that the Request has been executed.

3-134
305-C

D
-043-001

FrGrStrManResMonIF FrGrMonitorSwRequest FrGrMonitorController RWSet FrGrSoftwareMonitor FoGnCsmsIF ParameterMonitorRWSet

Return Request

Execute

Find SwMonitor

SWMonitor Not Found

Create SWMonitor

Add SwMonitor

Notify MSS of New SW Process

Notify Parameter Server of Status Interest

Request Executed

Delete Request

Return Status

checkQueue

GetRequest
FromQueue

Figure 3.3.4.1.4-1. Request for Software Monitoring is Received by the Resource Monitor Event Trace

3-135
305-C

D
-043-001

3.3.4.2.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrStrManResMonIF FrGrMonitorUsRequest FrGrMonitorController RWSet FrGrUsMonitor ParameterMonitorRWSet

ReturnRequest

Execute

Find UsMonitor

UsMonitor Not Found

Create UsMonitor

Add UsMonitor

Notify Parameter Server of Status Interest

Request Executed

Delete Request

Return Status

checkQueue
GetRequest
FromQueue

Figure 3.3.4.2.4-1. Request for User Station Monitoring is Received by the Resource Monitor Event Trace

3-136 305-CD-043-001

3.3.4.3 Request to Switch User Station Monitoring is Received by the Resource
Monitor Scenario

3.3.4.3.1 Request to Switch User Station Monitoring is Received by the Resource
Monitor Abstract

The purpose of the Request to Switch User Station Monitoring is Received by the Resource
Monitor scenario is to describe how the RMS Resource Monitor component acts upon receipt of a
request to change the User Station monitoring that is provided by the SCDO MSS Monitoring
Service. This essentially results in the RMS Resource Monitor terminating its interest in the status
of one User Station in favor of interest in another User Station.

3.3.4.3.2 Request to Switch User Station Monitoring is Received by the Resource
Monitor Summary Information

Interfaces:

Parameter Server

Stimulus:

The String Manager changes Command Authority and sends a FrGrSwitchMonitorUsRequest
to the Resource Monitor for processing.

Desired Response:

The Parameter Server will be notified to discontinue sending the status on one userstation and
begin sending the Resource Monitor a status on a different user station.

Pre-Conditions:

A different user has been granted Command Authority on a particular string and a different
userstation will need to be monitored.

Post-Conditions:

The Resource Monitor is capable of receiving a hardware status from the Parameter Server on
a different userstation and send an event if a userstation failure occurs.

3.3.4.3.3 Scenario Description

The Controller checks the queue of the FrGrStrManResMonIF and a
FrGrSwitchMonitorUsRequest is returned. The MonitorController invokes the
FrGrSwitchMonitorUsRequest object's Execute operation. A UsMonitor search is performed and
a FrGrUsMonitor object is found. The Parameter Server is notified to stop sending Resource
Monitor the status of the old user station. The FrGrUsMonitor's HwId is changed and the
Parameter Server is notified to start sending the Resource Monitor the new user station status. The
Request is deleted and the String Manager is notified that the Request has been executed.

3-137
305-C

D
-043-001

3.3.4.3.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

FrGrStrManResMonIF FrGrSwitchMonitorUsRequest FrGrMonitorController RWSet FrGrUsMonitorParameterMonitorRWSet

Return Request

Execute

Find UsMonitor

UsMonitor Found

Change HwId

Return Status

Notify Parameter Server of Status Interest

Request Executed

Delete Request

Notify Parameter Server of Status Interest

checkQueue
GetRequest
FromQueue

Figure 3.3.4.3.4-1. Request to Switch User Station Monitoring is Received
by the Resource Monitor Event Trace

3-138 305-CD-043-001

3.3.4.4 Failed Hardware Status from the Parameter Server is Received by the
Resource Monitor Scenario

3.3.4.4.1 Failed Hardware Status from the Parameter Server is Received by the
Resource Monitor Abstract

The purpose of the Failed Hardware Status from the Parameter Server is Received by the Resource
Monitor scenario is to describe how the RMS Resource Monitor component acts upon notification
from the Parameter Server that a hardware component has failed. The Parameter Server receives
information about the registered components status Svia a proxy that is provided to the DMS Event
Handler. The DMS Event Handler receives management events including changes in hardware
component status from the SCDO MSS Monitoring Service.

3.3.4.4.2 Failed Hardware Status from the Parameter Server is Received by the
Resource Monitor Summary Information

Interfaces:

Data Management Subsystem

Parameter Server

Stimulus:

The RMS Resource Monitor receives a FAILED HW Status from the Parameter Server.

Desired Response:

The RMS software will receive a HW failure status from the Parameter Server and send an
event that a RTS has failed.

Pre-Conditions:

CSMS detects a RTS failure and notifies DMS. DMS will notify the Parameter Server of the
status.

Post-Conditions:

Users will be notified that a RTS failure has occurred and appropriate failover actions can be
taken.

3.3.4.4.3 Scenario Description

The ParameterMonitor object receives a HW Status from the Parameter Server. The
MonitorController is notified of the status and determines that the status indicates a HW failure.
The HwMonitor object is retrieved and it is determined that the HwMonitor object is monitoring a
RTS. The FrGrMonitorController will then send a RTS failure event.

3-139
305-C

D
-043-001

3.3.4.4.4
S

tate T
ran

sitio
n

 D
escrip

tio
n

UserParameter FdEvEventLoggerFrGrMonitorController RWSetParameterMonitor

ReceiveStatus

Send Failed RTS Event

findHwMonitor

returnHwMonitor

UpdateParameter

Determine Status
Is FAILED

Determine Status
Is For HW

Determine HwMonitor
Is A Rts Monitor

Figure 3.3.4.4.4-1. Failed Hardware Status from the Parameter Server is Received
by the Resource Monitor Event Trace

3-140 305-CD-043-001

3.3.5 RMS Resource Monitor Component Data Dictionary

FrGrHardwareMonitor

class FrGrHardwareMonitor

This is an abstract base class that is a generalization of the Software and Hardware Monitor
objects.

Base Classes

public FrGrResourceMonitor

Private Data

RWCString myHwId

This attribute identifies the HwId of a particular piece of hardware.

FrGrMonitorController

class FrGrMonitorController

This class is responsible for initializing start-up of the Resource Monitor as well as initiating
the processing of FrGrStatus and FrGrMonitorRequest objects.

Public Functions

EcTInt Initialize(void)

This member function is responsible for establishing interfaces with external subsystems
as well as creating the necessary Collection Objects.

EcTInt ReceiveRequest(FrGrMonitorRequest* receivedRequest)

When a request is received by the FrGrStrManResMonIF object, this operation is invoked
from the interface object. It is passed a pointer to the Request object.EcTInt
ReceiveStatus(UserParameter* Status)

When a change in status is received by the ParameterMonitor object, this operation is
invoked. It is passed the UserParameter object.

EcTInt Run(void)

This member function is responsible for checking the appropriate interfaces for passed
data.

Protected Functions

EcTInt CreateFdEvEventLogger(void)

This operation creates the FdEvEventLogger object that will be passed to

the Event Handler whenever a need arises.

EcTInt CreateFoGnCsmsIF(void)

This operation creates the FoGnCsmsIF object and establishes a connection with CSMS.

3-141 305-CD-043-001

EcTInt CreateFrGrStrManResMonIF()

This operation creates the FrGrStrManResMonIF object and establishes a connection with
the String Manager process.

EcTInt CreateHwMonitorSet(void)

This operation creates the collection object that will be used to store the Hardware Monitor
Objects.

EcTInt CreateParameterMonitor(void)

This operation creates the ParameterMonitor object and establishes a connection with the
Parameter Server process.

EcTInt CreateSwMonitorSet(void)

This operation creates the collection object that will be used to store theSoftware Monitor
Objects.

EcTInt FrGrMonitorController::CreateFrGrRtsMonitors()

CreateFrGrRtsMonitors

This operation will create a FrGrRtsMonitor object for every RTS except for this RTS at
initialization

FrGrHardwareMonitor* FrGrMonitorController::FindHwMonitor(EcTInt hwId)

FindHwMonitor

This operation finds a particular FrGrHardwareMonitor object based on the passed HwId.

FrGrSoftwareMonitor* FrGrMonitorController::FindSwMonitor(EcTInt
pid)FindSwMonitor

This operation finds a particular FrGrSoftwareMonitor object based on the passed PID.

Private Data

FrGrMonitorRequest* myCurrentRequest

This attribute points to a FrGrMonitorRequest object

FdEvEventLogger* myFdEvEventLogger

This attribute points to the FdEvEventLogger object.

FoGnCsmsIF* myFoGnCsmsIF

This attribute points to the FoGnCsmsIF object.

FrGrStrManResMonIF* myFrGrStrManResMonIF

This attribute points to the FrGrStrManResMonIF object. This object will facilitate an
interface with the RTS String Manager process.

FrGrHardwareMonitor* myHwMonitor

This attribute points to a FrGrHardwareMonitor object

3-142 305-CD-043-001

RWSet* myHwMonitorSet

This attribute identifies the RWSet that contains the Hardware Monitor objects.

ParameterMonitor* myParameterMonitor

This attribute points to the ParameterMonitor object.

FrGrSoftwareMonitor* mySwMonitor

This attribute points to a FrGrSoftwareMonitor object

RWSet* mySwMonitorSet

This attribute identifies the RWSet that contains the Software Monitor objects.

FrGrMonitorRequest

class FrGrMonitorRequest

This base class is a generalization of all of the Monitor Requests received from the String
Manager process.

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)

This is a virtual operation that ensures every derived class will define its own Execute
operation.

FrGrMonitorSwRequest

class FrGrMonitorSwRequest

This class represents a request sent from the String Manager process to the Resource Monitor
process to begin monitoring a created software process.

Base Classes

public FrGrSwMonitorRequest

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)

This member funtion contains all of the functionality needed to process this request.

Protected Functions

FrGrSoftwareMonitor* CreateSwMonitor(void)

This member function is called by the Execute operation and creates the
FrGrSoftwareMonitor.

FrGrSoftwareMonitor* FindSwMonitor(FrGrMonitorController* PassedController)

This member function will find a FrGrSoftwareMonitor object if it has already been
created. This ensures that creation of identical FrGrSoftwareMonitor objects will be
prevented.

3-143 305-CD-043-001

Private Data

RWCString myStringId

This attribute identifies a particular StringId associated with this request.

RWCString mySwSubName

This attribute identifies a software subsystem associated with a particular process.

FrGrMonitorUsRequest

class FrGrMonitorUsRequest

This class will process a request from the String Manager to monitor a particular user station.

Base Classes

public FrGrUsMonitorRequest

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)

This member funtion contains all of the functionality needed to process this request.

Protected Functions

FrGrUsMonitor* CreateUsMonitor(void)

This member function is called by the Execute operation and creates the FrGrUsMonitor.

Private Data

RWCString myRole

This attribute identifies whether the User Station is being used for Ground Control or
Commanding purposes.

RWCString myStringId

This attribute identifies a particular StringId associated with this request.

FrGrResourceMonitor

class FrGrResourceMonitor

This base class is a generalization of all of the Hardware and Software Monitor objects.

Public Functions

RWCString GetStatus()

This operation will retrieve the Status associated with this Monitor object.

Private Data

UserParameter* myStatus

This attribute points to the UserParameter object that contains the status associated with

3-144 305-CD-043-001

this Monitor object.

FrGrRtsMonitor

class FrGrRtsMonitor

This class contains information on the status of a RTS.

Base Classes

public FrGrHardwareMonitor

Private Data

RWSet* myActiveStringSet

This attribute points to a RWSet that contains ID's of all of the active strings currently on
a RTS.

RWSet* myBackupStringSet

This attribute points to a RWSet that contains ID's of all of the backup strings currently on
a RTS.

FrGrSoftwareMonitor

class FrGrSoftwareMonitor

This class contains information on the status of a software process.

Base Classes

public FrGrResourceMonitor

Private Data

EcTInt myPid

This attribute identifies a PID associated with a FrGrSoftwareMonitor object.

RWCString myStringId

This attribute identifies a string associated with a FrGrSoftwareMonitor object.

RWCString mySwSubsystemName

This attribute identifies a software subsystem associated with a particular process. This can
be Telemetry, RTContact, Command, or Ground Script.

FrGrStopMonitorSwRequest

class FrGrStopMonitorSwRequest

This class processes a request from the String Manager to stop monitoring a software process.

3-145 305-CD-043-001

Base Classes

public FrGrSwMonitorRequest

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)

This member function contains all of the functionality needed to process this request.

Protected Functions

EcTInt DeleteSwMonitor(FrGrMonitorController* PassedController)

This member function is called by the Execute operation and deletes a
FrGrSoftwareMonitor object.

FrGrSoftwareMonitor FindSwMonitor(FrGrMonitorController* PassedController)

This member function will find a FrGrSoftwareMonitor object.

FrGrStopMonitorUsRequest

class FrGrStopMonitorUsRequest

This class will process a request from the String Manager to stop monitoring a userstation.

Base Classes

public FrGrUsMonitorRequest

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)

This member function contains all of the functionality needed to process this request.

Protected Functions

EcTInt DeleteUsMonitor(FrGrMonitorController* PassedController)

This member function will delete a UsMonitor object from the PassedController's HwSet.

FrGrStrManResMonIF

class FrGrStrManResMonIF

This class is used to receive messages from the WS/RTS RMS subsystem.

Public Construction

FrGrStrManResMonIF(const FrGrStrManResMonIF&)

FrGrStrManResMonIF(const FrGrStrManResMonIF&)

This member function creates a duplicate of this class.

FrGrStrManResMonIF()

This member function is the default constructor for this class.

3-146 305-CD-043-001

~FrGrStrManResMonIF()

This member function is the destructor for this class.

Public Functions

FrGrMonitorRequest* CheckQueue()

This member function will return a Request object from the Queue.

EcTInt Initialize(FrGrController* Controller)

This member function will create a Queue for it's Requests. It will set

the String Manager Address as well.

EcTInt ReceiveRequest(FrGrMonitorRequest* newRequest)

receiveRequest

This member function will receive a Request from the RTS RMS and put that Request in a
Queue.

EcTInt SendStatus(FrGrMonitorRequest* sentRequest)

This member function will send a status for the passed Request.

Private Data

FdEvEventLogger* myEventLogger

This member variable points to the FdEvEventLogger.

RWSet* myRequestQueue

This member variable points to the Queue that contains requests.

Address* myStrManAddress

This member variable identifies the Address of the String Manager.

FrGrSwMonitorRequest

class FrGrSwMonitorRequest

This class is an aggregation of the software monitoring requests.

Base Classes

public FrGrMonitorRequest

Private Data

EcTInt myPid

This attribute identifies a PID associated with this request.

RWCString myStringId

This attribute identifies a string associated with this request.

3-147 305-CD-043-001

FrGrSoftwareMonitor* mySwMonitor

This attribute points to a FrGrSoftwareMonitor object associated with this request.

FrGrSwitchMonitorUsRequest

class FrGrSwitchMonitorUsRequest

This class processes a request by the String Manager to stop monitoring one userstation and
start monitoring another. This is necessary when Ground Control or Command Authority
changes.

Base Classes

public FrGrUsMonitorRequest

Public Functions

EcTInt Execute(FrGrController* Controller)

This member function contains all of the functionality needed to process this request.

Private Data

RWCString myNewHwId

This attribute identifies the HwId of the userstation that has taken Ground Control or
Command Authority.

RWCString myRole

This attribute identifies whether the userstations involved have or had Ground Control or
Command Authority.

RWCString myStringId

This attribute identifies the string associated with this request.

FrGrUsMonitor

class FrGrUsMonitor

This class contains information on the status of a userstation.

Base Classes

public FrGrHardwareMonitor

Private Data

RWCString myRole

This attribute identifies whether the userstation is being used for Ground Control or
Command Authority.

RWCString myStringId

This attribute identifies a string associated with a userstation.

3-148 305-CD-043-001

FrGrUsMonitorRequest

class FrGrUsMonitorRequest

This class is a generalization of the requests that affect a FrGrUsMonitor object.

Base Classes

public FrGrMonitorRequest

Protected Functions

FrGrUsMonitor* FindUsMonitor(FrGrMonitorController* PassedController)

This member function will find a FrGrUsMonitor object.

Private Data

RWCString myHwId

This attribute identifies the HwId of the User Station that is affected by this request.

FrGrUsMonitor* myUsMonitor

This attribute points to a FrGrUsMonitor object associated with this

request.

3.4 Resource Management Subsystem Performance
The most compelling performance requirement that the Resource Management Subsystem must
satisfy is that of failure recovery. According to the Flight Operations Segment (FOS)
Requirements Specification for the ECS Project, Volume 1: General Requirements (CDRL
number 304-CD-001-002), the Resource Management Subsystem is required to recover from a
hardware or software component failure within the mission critical processing string within one (1)
minute. The FOS design goal for this recovery is thirty (30) seconds.

To satisfy this requirement, the real-time architecture supports the concept of logical strings that
run in a "hot backup" mode in order to facilitate an automated failover from one string of
components to another. This means that the RMS will provide the Flight Operations Team with
the ability to request allocation of hardware and software resources to act in a backup capacity for
like components that are actively supporting a spacecraft contact. The RMS will ensure that the
ground configuration of the active and backup strings is synchronous. If the backup string is
needed, a single user directive entered by an operator with the ground control privilege will begin
the failover process. From this point the failover is executed by the RMS software that ensures that
there is no more that one active logical string supporting the same activity at one time. Thus,
another RMS requirement to ensure "single point of command" is also satisifed.

Much design discussion was dedicated to the issue of automatic versus automated failover.
Ultimately the requirements support an automated failover procedure that is set in motion by an
operator with privilege within the EOC.

AB-1 305-CD-043-001

Abbreviations and Acronyms

AGS ASTER Ground System

AM Morning (ante meridiem) -- see EOS AM

ANA Analysis Subsystem

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

CA Command Authority

CAC Command Activity Controller

CAid Command Authority Identifier

CAwsID Command Authority Workstation Identifier

CCSDS Consultative Committee for Space Data Systems

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CLCW Command Link Control Words

CMD Command Subsystem

CMS Command Management System

CODA Customer Operations Data Accounting

COTS Commercial Off-The-Shelf

CSCI Computer software configuration item

CSMS Communications and System Management Segment

CSS Communications Subsystem (CSMS)

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DB Database

DbId Database Identifier

DBMS Database Management System

Decomm Decommutation

DFCD Data Format Control Document

DID Data item description; data ingest/distribution

DMS Data Management Subsystem

DSN Deep Space Network

DSS Decision Support System

AB-2 305-CD-043-001

ECL ECS Command Language

ECOM EOS Communications

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EOC EOS Operations Center

EOS Earth Observing System

EOSDIS EOS Data and Information System

FDF Flight Dynamics Facility

FIFO First In - First Out

FOP Frame Operation Procedure

FOS Flight Operations Segment (ECS)

FOT Flight Operations Team

FSE FOT S/C Evolutions

FUI FOS User Interface Subsystem

GCMR Ground Control Message Request

GSC Ground Script Controller

HK Housekeeping

HS Health and Safety

HW Hardware

HwId Hardware Identifier

I&T Integration and Test

ICC Instrument Control Center

ID Identifier

IF Interface

IP International Partners

IRD Interface requirements document

IST Instrument Support Toolkit

JPL Jet Propulsion Laboratory

LAN Local Area Network

LaRC Langley Research Center

LMC Lockheed Martin Corporation

LSM Local System Manager

LTIP Long Term Instrument Plan

LTSP Long Term Science Plan

MISR Multi-Angle Imaging SpectroRadiometer

AB-3 305-CD-043-001

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate Resolution Imaging Spectrometer

MOPITT Measurements of Pollution in the Troposphere

MSS CSMS Management Subsystem

MSS Managememt and Subsystem (part of CSMS)

MTPE Mission to Planet Earth

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCC Network Control Center

NOAA National Oceanic and Atmospheric Administration

OASIS Operations and Science Instrument Support

OMT Object Model Technique

OOD Object Oriented Design

PAS Planning and Scheduling

PDB Project Data Base

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Process Identifier

PS Parameter Server Subsystem

RCM Real-Time Contact Management Subsystem

RMA Reliability, Maintainability, Availability

RMS Resource Management Subsystem

RT Real Time

RTCS Relative Time Command Sequence

RTS Real Time Servers, Relative Time Sequence

RW Rogue Wave

RWC Rogue Wave Class

SB Standby

SCC Spacecraft Controls Computer

SCDO Science & Communication Data Operation

SMC Service Management Center

SN Space Network

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

SW Software

AB-4 305-CD-043-001

TD Target Day

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TL Team Leader

TLM Telemetry Subsystem

TOO Target of Opportunity

TW Target Week

UI User Interface

UTC Universal Time Coordinated

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

WS Workstation

GL-1 305-CD-043-001

Glossary

GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined start
date, takes a specific amount of time to complete, and comprises
definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

attitude data Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

• Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
quaternions, rates and biases, and associated parameters.

• Attitude generated onboard in quaternion or Euler angle form.

• Refined and routine production data related to the accuracy or
knowledge of the attitude.

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures divided
by the sum of the mean time between failures and the mean
down time [before restoration of function].

GL-2 305-CD-043-001

availability
(inherent) (Ai)

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive
action, a system will operate satisfactorily at any time. The
“ideal support environment” referred to, exists when the
stipulated tools, parts, skilled work force manuals, support
equipment and other support items required are available.
Inherent availability excludes whatever ready time, preventive
maintenance downtime, supply downtime and administrative
downtime may require. Ai can be expressed by the following
formula:

 Ai = MTBF/ (MTBF + MTTR)

Where: MTBF = Mean Time Between Failures

MTTR = Mean Time To Repair
availability
(operational) (Ao)

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ao can be expressed
by the following formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance (either
corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics
actions are all considered.

ST = Standby Time (or switch over time)

baseline activity
profile

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long
term plans (i.e., LTSP, LTIP, and long term spacecraft
operations plan).

build An assemblage of threads to produce a gradual buildup of
system capabilities.

GL-3 305-CD-043-001

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software
routines, and ground truth data that are to be used in the data
calibration processing routine.

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command
authority

A privilege or designation bestowed on EOC operators to act in
critical roles within the EOC. Command authority is granted to
one EOC user per command destination for the purpose of
sending real-time commands to a spacecraft. This privilege is
managed within a logical string to ensure that there is a single
point of command for an EOC spacecraft.

command and
data handling
(C&DH)

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

command group A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution,
but are executed immediately upon reaching their destination
on board. For the U.S. spacecraft, from the perspective of the
EOS Operations Center (EOC), a preplanned command group
is preprocessed by, and stored at, the EOC in preparation for
later uplink. A real-time command group is unplanned in the
sense that it is not preprocessed and stored by the EOC.

data source One of five attributes of a logical string that makes it unique.
The data source is an enumerated type that indicates the origin
of the telemetry data being monitored within the logical string
(i.e., real-time, simulation, historical replay)

dedicated service (aka dedicated logical string)A service dedicated to a single
user whereas resources that reside only on the requesting user's
workstation are employed to provide the requested service.

GL-4 305-CD-043-001

detailed activity
schedules

The schedule for a spacecraft and instruments which covers up
to a 10-day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting
instruments activities are incorporated in the detailed activity
schedule.

direct broadcast Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

EOS Data and
Operations
System

(EDOS)
production data
set

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission artifacts
removed, in time order, with duplicate data removed, and with
quality/ accounting (Q/A) metadata appended. Time span or
number of packets encompassed in a single data set are
specified by the recipient of the data. These data sets are
equivalent to Level 0 data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual packet
and the data set itself and with essential formatting information
for unambiguous identification and subsequent processing.

failure recovery The process by which the RMS acts upon an operator request to
transfer active processing and control of an EOS spacecraft
from one string of EOC hardware and software resources to
another.

ground control A privilege or designation that is granted to one EOC user per
logical string for the purpose of modifying the ground
configuration of the hardware and software resources within
that logical string.

historical replay
logical string

A logical string with a data source of the replay type. This
logical string requires the support of only real-time Telemetry
processes for the purpose of decommutating the historical data.

housekeeping
data

The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

GL-5 305-CD-043-001

instrument • A hardware system that collects scientific or operational data.

• Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

• An integrated collection of hardware containing one or more
sensors and associated controls designed to produce data on/in
an observational environment.

instrument
activity deviation
list

An instrument's activity deviations from an existing
instrument activity list, used by the EOC for developing the
detailed activity schedule.

instrument
activity list

An instrument's list of activities that nominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

instrument
engineering data

Subset of telemetered engineering data required for performing
instrument operations and science processing

instrument
microprocessor
memory loads

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

instrument
resource
deviation list

An instrument's anticipated resource deviations from an
existing resource profile, used by the EOC for establishing
TDRSS contact times and building the preliminary resource
schedule.

instrument
resource profile

Anticipated resource needs for an instrument over a target
week, used by the EOC for establishing TDRSS contact times
and building the preliminary resource schedule.

instrument
science data

Data produced by the science sensor(s) of an instrument,
usually constituting the mission of that instrument.

logical string A collection of hardware and software resources, and
information about how those resources are being used within
the EOC, to provide spacecraft and instrument control and
monitoring during real-time contacts, simulations, and
historical replays.

long-term
instrument plan
(LTIP)

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated
approximately every six months and covers a period of up to
approximately 5 years.

GL-6 305-CD-043-001

long-term
science plan
(LTSP)

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six months and covers a period of up to approximately
five years.

long term
spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

mean time
between failure
(MTBF)

mean down time
(MDT)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/
operating time.

Sum of the mean time to repair MTTR plus the average logistic
delay times.

mean time
between
maintenance
(MTBM)

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow the relationship: 1/MTBM = 1/MTBPM +
1/MTBCM

mean time to
repair (MTTR)

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design
parameters.

mirrored
connection

(aka mirrored logical string connection) Type of connection to
a shared service in which the requesting user is provided the
same telemetry ground configuration as the telemetry processes
running on the Real-Time Server. See also tailored connection.

mission critical A term used to describe an activity, function or EOC resource
that provides a service that is necessary for ensuring the well-
being of an EOS spacecraft.

mode One of five attributes of a logical string that makes it unique.
The mode is an enumerated type which indicates the operator's
intended use of the logical string (i.e., operational, test, training)

object Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are identified
by client via unique reference.

GL-7 305-CD-043-001

operational
database
identifier

One of five attributes of a logical string that makes it unique.
The operational database id indicates which database version is
used in configuration of the software in a specific logical string

orbit data Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position
(including the time system); some accuracy requirements may
be hundreds of meters while other may be a few centimeters.

permanent
process

(aka persistent process) Software process (task) that is executed
upon host startup and terminated upon host shutdown. See also
transient process.

playback data Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

preliminary
resource schedule

An initial integrated spacecraft schedule, derived from

instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

preplanned
stored command

A command issued to an instrument or subsystem to be
executed at some later time. These commands will be collected
and forwarded during an available uplink prior to execution.

principal
investigator (PI)

An individual who is contracted to conduct a specific scientific
investigation. (An instrument PI is the person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

prototype Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on a faster time scale than the incremental and formal
development track.

GL-8 305-CD-043-001

raw data Data in their original packets, as received from the spacecraft
and instruments, unprocessed by EDOS.

• Level 0 – Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

• Level 1A – Level 0 data, which may have been reformatted
or transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

• Level 1B – Radiometrically corrected and calibrated data in
physical units at full instrument resolution as acquired.

• Level 2 – Retrieved environmental variables (e.g., ocean
wave height, soil moisture, ice concentration) at the same
location and similar resolution as the Level 1 source data.

• Level 3 – Data or retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from

real-time data Data that are acquired and transmitted immediately to the
ground (as opposed to playback data). Delay is limited to the
actual time required to transmit the data.

real-time logical
strings

A logical string with a real-time data source. These logical
string are nominally used to operationally monitor real-time
contacts, and require the support of a full complement of
Telemetry, Command and Real-time Contact Management
subsystem processes as well as FUI Ground Script Controller,
DMS Archiver and Parameter Server processes.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s objectives.

SCC-stored
commands and
tables

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometime following their storage. The term “core-
stored” applies only to the location where the items are stored
on the spacecraft and instruments; core-stored commands or
tables could be associated with the spacecraft or any of the
instruments.

scenario A description of the operation of the system in user’s
terminology including a description of the output response for a
given set of input stimuli. Scenarios are used to define
operations concepts.

GL-9 305-CD-043-001

segment One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems Management Segment

FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

 • Sensor name: The name of the satellite sensor which was
used to obtain that data.

shared service (aka shared logical string) A logical string created to provide a
specific service to multiple users. Resources are allocated on a
Real-Time Server and multiple users from different user
workstations are allowed to individually access the shared
service and monitor the same activity.

spacecraft
identifier

One of five attributes of a logical string that makes it unique.
The spacecraft id marks a logical string for support of a specific
mission.

spacecraft
engineering data

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

spacecraft
subsystems
activity list

A spacecraft subsystem's list of activities that nominally covers
seven days, used by the EOC for developing the detailed
activity schedule.

spacecraft
subsystems
resource profile

Anticipated resource needs for a spacecraft subsystem over a
target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

state one of five attributes of a logical string that makes it unique.
The state is an enumerated type that indicates if a logical string
is actively performing its intended function (active), or if it
exists only to perform its intended function in the event of a
hardware or software failure in the active string (backup)

tailored
connection

(aka tailored logical string connection) Type of connection to a
shared service in which the requesting user is allowed to modify
the ground configuration of the telemetry processes running on
the local workstation, independent of the telemetry processes
executing on the Real-Time Server. The user may tailor the
ground configuration of the local processing to his own needs.
See also mirrored connection.

GL-10 305-CD-043-001

target of
opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

thread,

as used in
some Systems
Engineering
documents

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion of a
scenario, or multiple scenarios.

toolkits Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

Transient Process (aka temporary process) Software process (task) that is
executed by a parent process in order to perform a specific
function. Upon completion of that function, the process is
terminated by the parent process. See also permanent processs.

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced

	3. Real-Time Resource Management Subsystem
	3.1 Resource Management Subsystem Context
	3.1-1. Resource Management Subsystem Context Diagr...

	3.2 RMS String Manager Component
	3.2.1 RMS String Manager Component Context
	Figure 3.2.1-1. RMS String Manager Component Conte...

	3.2.2 RMS String Manager Component Interfaces
	3.2.3 RMS String Manager Component Object Model
	Figure 3.2.3-1. RMS String Manager Component Objec...
	Figure 3.2.3-2. RMS String Manager Component FrGrT...
	Figure 3.2.3-3. RMS String Manager Component FrGrC...
	Figure 3.2.3-4. RMS String Manager Component FrGrR...
	Figure 3.2.3-5. RMS String Manager Component FrGrR...
	Figure 3.2.3-6. RMS String Manager Component FrGrM...
	Figure 3.2.3-7. RMS String Manager Component FrGrS...
	Figure 3.2.3-8. RMS String Manager Component FrGrB...
	Figure 3.2.3-9. RMS String Manager Component FrGrS...
	Figure 3.2.3-10. RMS String Manager Component FrGr...
	Figure 3.2.3-11. RMS String Manager Component FrGr...
	Figure 3.2.3-12. RMS String Manager Component FrGr...
	Figure 3.2.3-13. RMS String Manager Component FrGr...
	Figure 3.2.3-14. RMS String Manager Component FrGr...

	3.2.4 RMS String Manager Component Dynamic Model
	Figure 3.2.4.1.4-1. Initialization of RMS Residing...
	Figure 3.2.4.2.4-1. Initialization of RMS Residing...
	Figure 3.2.4.2.4-2. Initialization of RMS Residing...
	Figure 3.2.4.2.4-3. Initialization of RTS RMS - Pa...
	Figure 3.2.4.2.4-4. Initialization of RTS RMS - Co...
	Figure 3.2.4.2.4-5. Initialization of RTS RMS - Re...
	Figure 3.2.4.3.4-1. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-1. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-2. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-3. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-4. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-5. Request for a Real-Time Servic...
	Figure 3.2.4.5.4-1. Execution of String Connection...
	Figure 3.2.4.5.4-2. Creation of Mirrored Telemetry...
	Figure 3.2.4.6.4-1. Execution of String Connection...
	Figure 3.2.4.6.4-2. Creation of Telemetry Subsyste...
	Figure 3.2.4.7.4-1. Request for Command Authority ...
	Figure 3.2.4.8.4-1. Request for Command Authority ...
	Figure 3.2.4.9.4-1. Request for Telemetry Configur...
	Figure 3.2.4.10.4-1. Request for Telemetry Configu...
	Figure 3.2.4.11.4-1 Request for Dedicated Replay T...
	Figure 3.2.4.12.4-1 Request for Dedicated Replay T...
	Figure 3.2.4.13.4-1. Request for a String Failover...
	Figure 3.2.4.14.4-1. Request for String Deactivati...
	Figure 3.2.4.15.4-1. Request for String Activation...
	Figure 3.2.4.15.4-2. Command State Change Event Tr...
	Figure 3.2.4.15.4-3. Telemetry State Change Event ...
	Figure 3.2.4.15.4-4. Real-Time Contact Management ...

	3.2.5 RMS String Manager Component Data Dictionary...

	3.3 RMS Resource Monitor Component
	3.3.1 RMS Resource Monitor Component Context
	Figure 3.3.1-1. RMS Resource Monitor Component Con...

	3.3.2 RMS Resource Monitor Component Interfaces
	Figure 3.3.3-1. RMS Resource Monitor Component Obj...
	Figure 3.3.3-2. RMS Resource Monitor Component FrG...
	Figure 3.3.3-3. RMS Resource Monitor Component FrG...
	Figure 3.3.4.2.4-1. Request for User Station Monit...
	Figure 3.3.4.3.4-1. Request to Switch User Station...
	Figure 3.3.4.4.4-1. Failed Hardware Status from th...

	Abbreviations and Acronyms
	Glossary

